Selección de variables en cebada mediante el análisis de componentes principales.

El propósito fundamental del análisis de componentes principales (ACP) es el de reducir la dimensionalidad de un conjunto de datos donde existan variables con cierto grado de correlación. Dicha reducción se basa en la obtención de combinaciones lineales de todas las variables originales denominadas...

Descripción completa

Detalles Bibliográficos
Autor Principal: Argüelles C., Jorge H.
Formato: Artículo (Article)
Lenguaje:Español (Spanish)
Publicado: Instituto Colombiano Agropecuario 2019
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12324/35388
Descripción
Sumario:El propósito fundamental del análisis de componentes principales (ACP) es el de reducir la dimensionalidad de un conjunto de datos donde existan variables con cierto grado de correlación. Dicha reducción se basa en la obtención de combinaciones lineales de todas las variables originales denominadas componentes principales (CP), y la posterior selección de un numero adecuado de estas, de tal forma que se preserve la mayor parte de la variación original. El hecho de que las CP sean combinaciones lineales de todas las variables originales, puede ser un inconveniente desde el punto de vista de interpretación cuando el numero de estas es grande o cuando el objetivo es seleccionar las variables para ser consideradas en estudios futuros. Con el fin de solucionar lo anterior, Jolliffe (5, 6) y McCabe (10), proponen una serie de metodologías para selección de variables, basadas en el ACP. En este trabajo se comparan dichas metodologías desde dos puntos de vista: buscando relaciones analíticas entre ellas, y mediante su utilización en el análisis de datos reales provenientes de un ensayo de den genotipos de cebada.