Control biológico de fitopatógenos del suelo

El control biológico de enfermedades de las plantas causadas por patógenos del suelo es posible gracias a las complejas interacciones que se dan entre los agentes de control biológico (acb), la planta hospedera, el fitopatógeno y la comunidad microbiana de la rizosfera —la cual está sujeta a cambios...

Descripción completa

Detalles Bibliográficos
Autores Principales: Moreno Velandia, Carlos Andrés, Cotes, Alba Marina, Beltrán Acosta, Camilo, Bettiol, Wagner, Elad, Yigal
Formato: Capítulo de libro (Book Chapter)
Lenguaje:Español (Spanish)
Publicado: ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA 2018
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12324/34059
id ir-20.500.12324-34059
recordtype dspace
institution Agrosavia
collection DSpace
language Español (Spanish)
topic Conservación de la naturaleza y recursos de la tierra - P01
Bioplaguicidas
Fitopatología
Organismos transmitidos por suelo
Transversal
spellingShingle Conservación de la naturaleza y recursos de la tierra - P01
Bioplaguicidas
Fitopatología
Organismos transmitidos por suelo
Transversal
Moreno Velandia, Carlos Andrés
Cotes, Alba Marina
Beltrán Acosta, Camilo
Bettiol, Wagner
Elad, Yigal
Control biológico de fitopatógenos del suelo
description El control biológico de enfermedades de las plantas causadas por patógenos del suelo es posible gracias a las complejas interacciones que se dan entre los agentes de control biológico (acb), la planta hospedera, el fitopatógeno y la comunidad microbiana de la rizosfera —la cual está sujeta a cambios dramáticos en una escala corta de tiempo--. Por otra parte, en una escala larga de tiempo, se generan cambios en la rizosfera debido al crecimiento de las raíces, las interacciones entre los organismos allí presentes y los procesos de meteorización del suelo. La complejidad de estas interacciones ha influido en el éxito y el fracaso de distintos casos de control biológico de las enfermedades de las plantas, lo que generó, en sus inicios, un alto grado de escepticismo hacia esta práctica. Sin embargo, la percepción de este método de control por parte de los agricultores también ha evolucionado, gracias a las exigencias generalizadas del consumidor por alimentos libres de residuos de plaguicidas, el cuidado del medioambiente y el apoyo de la legislación en varios países. Aunque en la actualidad existen brechas de conocimiento sobre las mencionadas interacciones, los avances recientes en tecnologías de secuenciación del dna han facilitado la caracterización de la composición, la diversidad y el potencial funcional de las comunidades microbianas. Esto ha permitido identificar nuevos acb y desarrollar estrategias de manejo de comunidades microbianas para aumentar la supresión de enfermedades. En este capítulo se presenta un resumen de la historia del desarrollo del control biológico de fitopatógenos del suelo y las principales características fisicoquímicas y biológicas de la rizosfera. También se describen los acb más ampliamente reconocidos y sus modos de acción, así como estudios de caso exitosos de control biológico de patógenos de suelo y las características que debería tener un acb ideal.
format Capítulo de libro (Book Chapter)
author Moreno Velandia, Carlos Andrés
Cotes, Alba Marina
Beltrán Acosta, Camilo
Bettiol, Wagner
Elad, Yigal
author_facet Moreno Velandia, Carlos Andrés
Cotes, Alba Marina
Beltrán Acosta, Camilo
Bettiol, Wagner
Elad, Yigal
author_sort Moreno Velandia, Carlos Andrés
title Control biológico de fitopatógenos del suelo
title_short Control biológico de fitopatógenos del suelo
title_full Control biológico de fitopatógenos del suelo
title_fullStr Control biológico de fitopatógenos del suelo
title_full_unstemmed Control biológico de fitopatógenos del suelo
title_sort control biológico de fitopatógenos del suelo
publisher ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2018
url http://hdl.handle.net/20.500.12324/34059
_version_ 1712095484439429120
spelling ir-20.500.12324-340592021-09-08T14:00:37Z Control biológico de fitopatógenos del suelo Biological control of soil-borne phytopathogens Moreno Velandia, Carlos Andrés Cotes, Alba Marina Beltrán Acosta, Camilo Bettiol, Wagner Elad, Yigal Conservación de la naturaleza y recursos de la tierra - P01 Bioplaguicidas Fitopatología Organismos transmitidos por suelo Transversal El control biológico de enfermedades de las plantas causadas por patógenos del suelo es posible gracias a las complejas interacciones que se dan entre los agentes de control biológico (acb), la planta hospedera, el fitopatógeno y la comunidad microbiana de la rizosfera —la cual está sujeta a cambios dramáticos en una escala corta de tiempo--. Por otra parte, en una escala larga de tiempo, se generan cambios en la rizosfera debido al crecimiento de las raíces, las interacciones entre los organismos allí presentes y los procesos de meteorización del suelo. La complejidad de estas interacciones ha influido en el éxito y el fracaso de distintos casos de control biológico de las enfermedades de las plantas, lo que generó, en sus inicios, un alto grado de escepticismo hacia esta práctica. Sin embargo, la percepción de este método de control por parte de los agricultores también ha evolucionado, gracias a las exigencias generalizadas del consumidor por alimentos libres de residuos de plaguicidas, el cuidado del medioambiente y el apoyo de la legislación en varios países. Aunque en la actualidad existen brechas de conocimiento sobre las mencionadas interacciones, los avances recientes en tecnologías de secuenciación del dna han facilitado la caracterización de la composición, la diversidad y el potencial funcional de las comunidades microbianas. Esto ha permitido identificar nuevos acb y desarrollar estrategias de manejo de comunidades microbianas para aumentar la supresión de enfermedades. En este capítulo se presenta un resumen de la historia del desarrollo del control biológico de fitopatógenos del suelo y las principales características fisicoquímicas y biológicas de la rizosfera. También se describen los acb más ampliamente reconocidos y sus modos de acción, así como estudios de caso exitosos de control biológico de patógenos de suelo y las características que debería tener un acb ideal. 2018-11-23T15:40:04Z 2018-11-23T15:40:04Z 2018 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 http://hdl.handle.net/20.500.12324/34059 reponame:Biblioteca Digital Agropecuaria de Colombia https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1  144 221 European Food Safety Authority (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 sante/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=2324. European Food Safety Authority (efsa). (2017b). Conclusion on the peer review of the pesticide risk assessment of the active substance Clonostachys rosea strain J1446 (approved in Regulation (eu) No 540/2011 as Gliocladium catenulatum strain J1446). EFSA Journal, 15(7), 4905. doi:10.2903/j.efsa.2017.4905. European Food Safety Authority (efsa). (2017c). Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas chlororaphis strain ma 342. EFSA Journal, 15(1), 4668. doi:10.2903/j.efsa.2017.4668. Faure, D., Vereecke, D., & Leveau, J. H. J. (2009). Molecular communication in the rhizosphere. Plant and Soil, 321(1-2), 279-303. doi:10.1007/s11104-008-9839-2. Ferreira, S. A., & Boley, R. A. (1992). Sclerotinia sclerotiorum. Recuperado de http://www.extento.hawaii.edu/KBASE/crop/type/s_scler.htm. Ferrucho, R. L., Cifuentes, J. M., Ceresini, P., & Garcia-Dominguez, C. (2012). Rhizoctonia solani AG-3PT is the major pathogen associated with potato stem canker andblack scurf in Colombia. Agronomia Colombiana, 30(2), 204-213. Flores, A., Chet, I., & Herrera-Estrella, A. (1997). Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prb1. Current Genetics, 31(1), 30-37. doi:10.1007/s002940050173. Foley, M. F., & Deacon, J. W. (1985). Isolation of Pythium oligandrum and other necrotrophic mycoparasites from soil. Transactions of the British Mycological Society, 85(4), 631-639. doi:10.1016/S0007-1536(85)80257-6. Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www.barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev.phyto.43.032904.092924. Frey, P., Prior, P., Marie, C., Kotoujansky, A., Trigalet-Demery, D., & Trigalet, A. (1994). Hrp- Mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Applied and Environmental Microbiology, 60(9), 3175-3181. Friedl, M. A., & Druzhinina, I. S. (2012). Taxon-specific metagenomics of Trichoderma reveals a narrow communityof opportunistic species that regulate each other’s development. Microbiology, 158(Pt. 1), 69-83. doi:10.1099/mic.0.052555-0. Garcia, A. M. (2017). Inicia investigacion oficial sobre Dumping en importaciones de papa congelada. Recuperado de http://fedepapa.com/inicia-investigacion-oficial-sobredumping-en-importaciones-de-papa-congelada-2-2/. Garcia, M., Santos, A., Garcia, A., Villamizar, L., & Cotes, A. M. (2010). Compatibilidad de Trichoderma koningiopsis Th003 con plaguicidas quimicos. En C. A. Moreno-Velandia, & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 55-60). Bogota, Colombia: Corporacion Colombiana de Investigacion Agropecuaria (Corpoica). Gerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., & Rey, P. (2014). Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science and Pollution Research, 21(7), 4847-4860. doi:10.1007/s11356-013-1807-6. Giczey, G., Kerenyi, Z., Fulop, L., & Hornok, L. (2001). Expression of cmg1, an exo-β-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Applied and Environmental Microbiology, 67(2), 865-871. doi:10.1128/aem.67.2.865-871.2001. Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X., & Peng, Y. (2007). l-Arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genetics and Biology, 44(12), 1368-1379. doi:10.1016/j.fgb.2007.07.007. Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annure.phyto.35.1.111. Gorgen, C. A., Da Silveira Neto, A. N., Carneiro, L. C., Ragagnin, V., & Junior, M. L. (2010). Controle do mofobranco com palhada e Trichoderma harzianum 1306 em soja. Pesquisa Agropecuaria Brasileira, 44(12), 1583-1590 doi:10.1590/S0100-204X2009001200004. Government Publishing Office (gpo). (2016). Federal register. Recuperado de https://www.federalregister.gov/agencies/government-publishing-office. Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15(1), 203. doi:10.1186/s12934-016-0603-7. Grayston, S. J., & Campbell, C. D. (1996). Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree physiology, 16(11-12), 1031-1038. doi:10.1093/treephys/16.11-12.1031. Grossbard, E. (1945). Control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 31, 55. Grossbard, E. (1946). The control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 32, 41. Grossbard, E. (1947). The control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 33, 29. Lynch, J. M. (1990). Introduction: some consequences of microbial rhizosphere competence for plant and soil. En The rhizosphere (pp. 1-10). Chichester, Inglaterra: John Wiley and Sons Ltd. Ma, Z., Hua, G. K. H., Ongena, M., & Hofte, M. (2016). Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environmental Microbiology Reports, 8(5), 896-904. doi:10.1111/1758-2229.12454. Maget-Dana, R., & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87(1-3), 151-174. doi:10.1016/0300-483X(94)90159-7. Malamud, O. S. (1989). Research progress on Verticillium dahliae Kleb. En Centro Internacional de la Papa (cip), Fungal Diseases of the Potato. Report of planning conference on fungal diseases of the potato (pp. 139-157). Lima, Peru: cip. Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., & Ongena, M. (2012). Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Archives of Microbiology, 194(11), 893-899. doi:10.1007/s00203-012-0823-0. Maloy, O. C., & Lang, K. J. (2003). Carl Freiherr Von Tubeuf: Pioneer in biological control of plant diseases. Annual Review of Phytopatholgy, 41(1), 41-52. doi:10.1146/annurev.phyto.41.052002.095444. Mallmann, W., & Hemstreet, C. (1924). Isolation of an inhibitory substance from plants. Agricultural Research, 28(6), 599-602. Mandimba, G., Heulin, T., Bally, R., Guckert, A., & Balandreau, J. (1986). Chemotaxis of free-living nitrogenfixing bacteria towards maize mucilage. Plant and Soil, 90(1-3), 129-139. doi:10.1007/bf02277392. Marcum, D. B., Grogan, R. G., & Greathead, A. S. (1977). Fungicide control of lettuce drop caused by Sclerotinia sclerotiorum minor. Plant Disease Reporter, 61, 555-559. Marschner, H. (1995). Mineral nutrition of higher plants (2.a ed.). Londres, Reino Unido: Academic Press. doi:10.1111/j.1365-3040.1988.tb01130.x. Marshall, D. (1982). Effect of Trichoderma harzianum seed treatment and Rhizoctonia solani inoculum concentration on damping-off of snap bean in acidic soils. Plant Disease, 66(9), 788-789. doi:10.1094/PD-66-788. Martin, F., & Hancock, J. (1986). Association of chemical and biological factors in soils suppressive to Pythium ultimum. Phytopathology, 76(11), 1221-1231. doi:10.1094/Phyto-76-1221. Mastouri, F., Bjorkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/PHYTO-03-10-0091. Mavrodi, D. V., Parejko, J. A., Mavrodi, O. V., Kwak, Y.-S., Weller, D. M., Blankenfeldt, W., & Thomashow, L. S. (2013). Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environmental Microbiology, 15(3), 675-686. doi:10.1111/j.1462-2920.2012.02846.x. Mazzola, M. (1998). The potential of natural and genetically engineered fluorescent Pseudomonas spp. as biological control agents. En N. S. Subba & Y. R. Dommergues (Eds.), Microbial Interactions in agricultura and forestry (Vol. 1, pp. 193-217). Enfield, EE. UU.: Science Publishers, Inc. McClure, T. T. (1951). Fusarium foot rot of sweet potato sprouts. Phytopathology, 41, 72-77. McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39(8), 577-578. McQuilken, M. P., Gemmell, J., Hill, R. A., & Whipps, J. M. (2003). Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Letters, 219(1), 27-31. doi:10.1016/S0378-1097(02) 01180-1. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H., ... Raaijmakers, J. M. (2011) Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science, 332(6033), 1097-1100. doi:10.1126/science.1203980. Mendgen, K., Hahn, M., & Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34(1), 367-386. doi:10.1146/annurev.phyto.34.1.367. Menzies, J. D. (1959). Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652. Meyer, M., Campos, H., Godoy, C., & Utiamada, C. (2016). Ensaios cooperativos de controle biologico de mofo branco na cultura da soja - safras 2012 a 2015. Documentos, 368, 19-46. doi:10.13140/RG.2.1.3074.9842. Meyer, M., Campos, H., Godoy, C., Utiamada, C., Silva, L. H. C. P., Goussain, M., ... Juliatti, F. C. (2017). Ensaios cooperativos de controle biologico de Sclerotinia sclerotiorum na cultura da soja: resultados sumarizados da safra 2015/2016. Circular Tecnica, 124, 1-5. Meyer, M. C., Campos, H. D., Godoy, C. V., & Utiamada, C. M. (2014). Ensaios cooperativos de controle químico de mofo branco na cultura da soja: safras 2009 a 2012. Documentos, 345, 1-101. Meyer, M. C., Campos, H. D., Henning, A. A., Machado, A. Q., Utiamada, C. M., Pimenta, C. B., ... Venancio,W. S. (2015). Eficiencia de fungicidas para controle de mofo branco (Sclerotinia sclerotiorum) em soja, na safra 2009/2010 – resultados sumarizados e individuais dos ensaios cooperativos. Circular Tecnica, 109, 1-24. Mezui, J. C., Cotes, A. M., Lepoivre, P., & Semal, J. (1994). Evaluation of seed priming and Trichoderma treatmentfor the biological control of damping-off agents. En Institut National de la Recherche Agronomique (INRA) (Ed.), Diseases and insects in forest nurseries (Vol. 68, pp. 189-196). Dijon, Francia: INRA. Millard, W. A., & Taylor, C. B. (1927). Antagonism of microorganisms as the controlling factor in the: Inhibition of scab by green-manuring. Annals of Applied Biology, 14(2), 202-216. doi:10.1111/j.1744-7348.1927.tb07076.x. Mohamed, N., Lherminier, J., Farmer, M. J., Fromentin, J., Beno, N., Houot, V., ... Blein, J. P. (2007). Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology, 97(5), 611-620. doi:10.1094/PHYTO-97-5-0611. Monaci, L., Quintieri, L., Caputo, L., Visconti, A., & Baruzzi, F. (2016). Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry. Rapid Communications in Mass Spectrometry, 30(1), 45-53. doi:10.1002/rcm.7408. Mongkolthanaruk, W. (2012). Classification of Bacillus beneficial substances related to plants, humans and animals. Journal of Microbiology and Biotechnology, 22(12), 1597-1604. Monteiro, F. P., Ferreira, L. C., Pacheco, L. P., & Souza, P. E. (2013). Antagonism of Bacillus subtilis against Sclerotinia sclerotiorum on Lactuca sativa. Journal of Agricultural Science, 5(4), 214-223. doi:10.5539/jas.v5n4p214. Montero, M., Sanz, L., Rey, M., Llobell, A., & Monte, E. (2007). Cloning and characterization of bgn16・3, coding for a β-1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. Journal of Applied Microbiology, 103(4), 1291-1300. doi:10.1111/j.1365-2672.2007.03371.x. Moore, E. S. (1926). D’Herelle’s bacteriophage in relation to plant parasites. South African Journal of Science, 23(12), 306. Moreno-Velandia, C. A. (2017). Interactions between Bacillus amyloliquefaciens Bs006, Fusarium oxysporum Map5 and cape gooseberry (Physalis peruviana) (tesis doctoral). Universidad Nacional, Bogota, Colombia. Moreno, C., Castillo, F., Gonzalez, A., Bernal, D., Jaimes, Y., Chaparro, M., ... Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1016/j.pmpp.2009.10.001. Moreno, C. A., Cotes, A. M., Smith, A., Beltran, C., Villamizar, L., Gomez, M., ... Santos, A. (2010). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogota, Colombia: Corporacion Colombiana de Investigacion Agropecuaria (Corpoica). Moszczyńska, E., Pytlarz-Kozicka, M., & Grzeszczuk, J. (2015). The impact of applying biological treatment on the infection of potato tubers by the fungus Rhizoctonia solani and the bacterium Streptomyces scabiei. Journal of Research and Applications in Agricultural Engineering, 60(4), 46-50. Mukherjee, M., Horwitz, B. A., Sherkhane, P. D., Hadar, R., & Mukherjee, P. K. (2006). A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Current Genetics, 50(3), 193-202. doi:10.1007/s00294-006-0075-0. Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – A genomic perspective. Microbiology, 158(Pt 1), 35-45. doi:10.1099/ mic.0.053629-0. Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, B. A. Horwitz, U. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma biology and applications (pp. 1-9). Nagpur, India: CAB International. Mukherjee, P. K., Latha, J., Hadar, R., & Horwitz, B. A. (2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryotic Cell, 2(3), 446-455. doi:10.1128/ec.2.3.446-455.2003. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiology Ecology, 79(1), 176-191. doi:10.1111/j.1574-6941.2011.01208.x. Nogues, S., Cotxarrera, L., Alegre, L., & Trillas, M. I. (2002). Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist, 154(2), 461-470. doi:10.1046/j.1469-8137.2002.00379.x. Notenboom, V., Boraston, A. B., Williams, S. J., Kilburn, D. G., & Rose, D. R. (2002). High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10a with bound substrates reveal a novel mode of xylan binding. Biochemistry, 41(13), 4246-4254. doi:10.1021/bi015865j. Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annual Review of Phytopathology, 25(1), 125-143. doi:10.1146/annurev.py.25.090187.001013. Omann, M., & Zeilinger, S. (2010). How a mycoparasite employs G-protein signaling: Using the example of Trichoderma. Journal of Signal Transduction, 2010, 123- 126. doi:10.1155/2010/123126. Omann, M. R., Lehner, S., Escobar Rodriguez, C., Brunner, K., & Zeilinger, S. (2012). The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology, 158(Pt 1), 107-118. doi:10.1099/ mic.0.052035-0. Ongena, M., Henry, G., & Thonart, P. (2009). The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. En U. Gisi, I. Chet, & M. L. Gullino (Eds.), Recent developments in management of plant diseases (pp. 59-69). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-8804-9_5. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115-125. doi:10.1016/j.tim.2007. 12.009. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117- 1142. doi:10.1094/PHI-A-2006-1117-02. Papapostolou, I., & Georgiou, C. D. (2010). Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study. Microbiology, 156(Pt 3), 960-966. doi:10.1099/ mic.0.034579-0. Papavizas, G., Lewis, J., & Moity, T. (1982). Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities. Phytopathology, 72(1), 126-132. Patel, H., Tscheka, C., Edwards, K., Karlsson, G., & Heerklotz, H. (2011). All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochimica et Biophysica Acta, 1808(8), 2000-2008. doi:https://doi:org/10.1016/j.bbamem.2011.04.008. Pennock, D., & McKenzie, N. (2016). Estado mundial del recurso suelo. Recuperado de http://www.fao.org/3/a-i5126s.pdf. Perez-Garcia, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187-193. doi:10.1016/j.copbio.2010.12.003. Perez, S. L., Piedrahita, W., & Arbelaez, G. (2011). Patogenesis de la pudricion blanda de la lechuga (Lactuca sativa L.) en la sabana de Bogota causada por Sclerotinia sclerotiorum (Lib.) de Bary y Sclerotinia minor Jagger. Una revision. Revista Colombiana de Ciencias Horticolas, 3(2), 262-274. doi:10.17584/rcch.2009v3i2.1217. Pertot, I., Puopolo, G., Hosni, T., Pedrotti, L., Jourdan, E., & Ongena, M. (2013). Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiology Ecology, 86(3), 505-519. doi:10.1111/1574-6941.12177. Picard, K., Ponchet, M., Blein, J.-P., Rey, P., Tirilly, Y., & Benhamou, N. (2000). Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiology, 124(1), 379- 396. doi:10.1104/pp.124.1.379. Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent Pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84(9), 940-947. Pieterse, C. M. J., Van Pelt, J. A., Verhagen, B. W., Ton, J., Van Wees, A. C. M., Leon-Kloosterziel, K. M., & Van Loon, L. C. (2003). Induced systemic resistance by plant growthpromoting rhizobacteria. Symbiosis, 35(1-3), 39-54. Pietro, A. D., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315-325. doi:10.1046/ j.1364-3703.2003.00180.x. Purdy, L. H. (1979). Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875-880. doi:10.1094/ Phyto-69-875. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi:10.1111/j.1574-6976.2010.00221.x. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moenne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1-2), 341- 361. doi:10.1007/s11104-008-9568-6. Raaijmakers, J. M., Van der Sluis, L., Bakker, P. A. H. M., Schippers, B., Koster, M., & Weisbeek, P. J. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal of Microbiology, 41(2), 126-135. doi:10.1139/m95-017. Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-Diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions, 11(2), 144-152. doi:10.1094 MPMI.1998.11.2.144. Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K., ... Harada, N. (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology, 45(1), 103-117. doi:10.1007/s13313-016-0397-4. Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. En: B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 309-317). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_32. Reinking, O. A., & Manns, M. M. (1933). Parasitic and other fusaria counted in tropical soils. Zeitschrift fur Parasitenkunde, 6(1), 23-75. doi:10.1007/bf02121421. Reino, J. L., Guerrero, R. F., Hernandez-Galan, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1), 89-123. doi:10.1007/s11101-006-9032-2. Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera- Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361-4370. doi:10.1128/aem.00129-11. Ren, L., Li, G., Han, Y. C., Jiang, D. H., & Huang, H.-C. (2007). Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of β-1,3-glucanase of this mycoparasite. Biological Control, 43(1), 1-11. doi:10.1016/j.biocontrol.2007.06.006. Rey, P., Le Floch, G., Benhamou, N., & Tirilly, Y. (2008). Pythium oligandrum biocontrol: its relationships with fungi and plants. En E. Ait Barka, & C. Clement (Ed.), Plant-Microbe Interactions (pp. 43-57). Kerala, India: Research Signpost. Roberts, W. (1873). Studies on biogenesis. Proceedings of the Royal Society of London, 22(148-155), 289-291. doi:10.1098/rspl.1873.0045. Romao-Dumaresq, A. S., De Araujo, W. L., Talbot, N. J., & Thornton, C. R. (2012). rna interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One, 7(10), e47888. doi:10.1371/ journal.pone.0047888. Romero, D., De Vicente, A., Olmos, J. L., Davila, J. C., & Perez-Garcia, A. (2007). Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal of Applied Microbiology, 103(4), 969-976. doi:10.1111/j.1365-2672.2007.03323.x. Rotblat, B., Enshell-Seijffers, D., Gershoni Jonathan, M., Schuster, S., & Avni, A. (2002). Identification of an essential component of the elicitation active site of the eix protein elicitor. The Plant Journal, 32(6), 1049-1055. doi:10.1046/j.1365-313X.2002.01490.x. Rovira, A. D. (1956). Plant root excretions in relation to the rhizosphere effect. Plant and Soil, 7(2), 178-194. doi:10.1007/BF01343726. Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turra, D., Woo, S. L., & Lorito, M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: The role of an abc transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant-Microbe Interactions, 22(3), 291-301. doi:10.1094/MPMI-22-3-0291. Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527-560. doi:10.1146/annurev.arplant.52.1.527. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932. doi:10.1073/pnas.0730845100. Sammer, U. F., Reiher, K., Spiteller, D., Wensing, A., & Volksch, B. (2012). Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)- propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens. MicrobiologyOpen, 1(4), 438-449. doi:10.1002/mbo3.43. Sanford, G. B., & Broadfoot, W. C. (1931). Studies of the effects of other soil-inhabiting micro-organisms on the virulence of Ophiobolus graminis Sacc. Scientific Agriculture, 11(8): 512-528. doi:10.4141/sa-1931-0056. Santos, A., Beltran, C., Garcia, M., Cotes, A. M., & Villamizar, L. (2011). Control de Rhizoctonia solani en semilla de papa criolla con T. koningiopsis (Th003) y T. asperellum (Th034). En C. R. Beltran Acosta, C. A. Moreno Velandia, & A. M. Cotes (Eds.), Trichoderma koningiopsis Th003, alternativa biologica para el control de Rhizoctonia solani en el cultivo de papa (pp. 32-42). Mosquera, Colombia: Corporacion Colombiana de Investigacion Agropecuaria (Corpoica). Schafer, T., & Adams, T. (2015). The importance of microbiology in sustainable agriculture. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 5-6). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_2. Scher, F. M., & Baker, R. (1980). Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology, 70(5), 412-417. doi:10.1094/Phyto-70-412. Schirmbock, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370. Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22(1), 36-42. doi:10.1016/j. fbr.2008.03.002. Seidl, V., Song, L., Lindquist, E., Gruber, S., Koptchinskiy, A., Zeilinger, S., ... Kubicek, C. P. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 10, 567. doi:10.1186/1471-2164-10-567. Serrano-Carreon, L., Hathout, Y., Bensoussan, M., & Belin, J.-M. (1993). Metabolism of linoleic acid or mevalonate and 6-pentyl-α-pyrone biosynthesis by Trichoderma species. Applied and Environmental Microbiology, 59(9), 2945-2950. Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7), 687-693. doi:10.1094/PHYTO.2001.91.7.687. Sharon, M., Sneh, B., Kuninaga, S., & Hyakumachi, M. (2006). The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience, 47(6), 299-316. doi:10.1007/S10267-006-0320-X. Shipton, P. J. (1977). Monoculture and soilborne plant pathogens. Annual Review of Phytopathology, 15(1), 387- 407. doi:10.1146/annurev.py.15.090177.002131. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurev-phyto-073009-114450. Sindhu, S. S., Suneja, S., Goel, A. K., Parmar, N., & Dadarwal, K. R. (2002). Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Applied Soil Ecology, 19(1), 57-64. doi:10.1016/S0929- 1393(01)00176-7. Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications, 319(2), 291-297. doi:10.1016/j.bbrc.2004.04.155. Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En C. P. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium basic biology taxonomy and genetics (Vol. 1, pp. 139-191). Londres, Reino Unido: Taylor and Francis Ltd. Smalla, K., Sessitsch, A., & Hartmann, A. (2006). The Rhizosphere: ‘soil compartment influenced by the root’. FEMS Microbiology Ecology, 56(2), 165-165. doi:10.1111/j.1574-6941.2006.00148.x. Srivastava, S., Sinha, V., Vaishnavi, A., Kunwar, T., & Tigga, R. S. (2012). Regulation of antibiotics production in biocontrol strains of Pseudomonas spp. En T. Satyanarayana & B. N. Johri (Eds.), Microorganisms in sustainable agriculture and biotechnology (pp. 197-225). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2214-9_11. Steinberg, C., Whipps, J. M., Wood, D., Fenlon, J., & Alabouvette, C. (1999). Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycological Research, 103(6), 769-778. doi:10.1017/ S0953756298007710. Steinkellner, S., Mammerler, R., & Vierheilig, H. (2005). Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interactions, 1(1), 23-30. doi:10.1080/17429140500134334. Stotzky, G., & Rem, L. T. (1966). Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria. Canadian Journal of Microbiology, 12(3), 547- 563. doi:10.1139/m66-078. Stotzky, G., & Torrence Martin, R. (1963). Soil mineralogy in relation to the spread of Fusarium wilt of banana in central America. Plant and Soil, 18(3), 317-337. doi:10.1007/bf01347232. Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82(10), 1068- 1078. doi:10.1094/PDIS.1998.82.10.1068. Summers, W. C. (2005). Bacteriophage research: early history. En E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 5-27). Boca Raton, EE. UU.: CRC Press. Szabo, M., Csepregi, K., Galber, M., Viranyi, F., & Fekete, C. (2012). Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biological Control, 63(2), 121-128. doi:10.1016/j.biocontrol.2012.06.013. Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., & Vagvolgyi, C. (2005). Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiologica et Immunologica Hungarica, 52(2), 137-168. doi:10.1556/ AMicr.52.2005.2.2. Takenaka, S., Nakamura, Y., Kono, T., Sekiguchi, H., Masunaka, A., & Takahashi, H. (2006). Novel elicitinlike proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Molecular Plant Pathology, 7(5), 325-339. doi:10.1111/j.1364-3703.2006.00340.x. Takenaka, S., Sekiguchi, H., Nakaho, K., Tojo, M., Masunaka, A., & Takahashi, H. (2008). Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology, 98(2), 187-195. doi:10.1094/PHYTO-98-2-0187. Thomas, R. C. (1935). A bacteriophage in relation to Stewart’s disease of corn. Phytopathology, 25(3), 371-372. Tijerino, A., Elena Cardoza, R., Moraga, J., Malmierca, M. G., Vicente, F., Aleu, J., ... Hermosa, R. (2011). Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 48(3), 285- 296. doi:10.1016/j.fgb.2010.11.012. Tisdale, S. L., Havlin, J., Beaton, J., & Nelson, W. L. (1975). Soil fertility and fertilizers. Nueva York, EE. UU.: Pearson Education. doi:10.2307/1292062. Tomprefa, N., Hill, R., Whipps, J., & McQuilken, M. (2011). Some environmental factors affect growth and antibiotic production by the mycoparasite Coniothyrium minitans. Biocontrol Science and Technology, 21(6), 721-731. doi:10. 1080/09583157.2011.575211. Tomprefa, N., McQuilken, M. P., Hill, R. A., & Whipps, J. M. (2009). Antimicrobial activity of Coniothyrium minitans and its macrolide antibiotic macrosphelide A. Journal of Applied Microbiology, 106(6), 2048-2056. doi:10.1111/ j.1365-2672.2009.04174.x. Torkewitz, R. (2008). Chronology of fungicides. Recuperado de https://www.apsnet.org/about/history/Documents/ Chronology_of_Fungicides.pdf. Torres, H. (2002). Manual de las enfermedades mas importantes de la papa en el Peru. Lima, Peru: Centro Internacional de la Papa (cip). Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2016). Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: sem study of fungal changes and uv-maldi-tof ms analysis of their bioactive compounds. Microbiological Research, 182, 31-39. doi:10.1016/j. micres.2015.09.005. Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 158(10), 649-658. doi:10.1111/j.1439- 0434.2010.01671.x. Tsror, L., Barak, R., & Sneh, B. (2001). Biological control of black scurf on potato under organic management. Crop Protection, 20(2), 145-150. doi:10.1016/S0261- 2194(00)00124-1. Tsror, L., & Peretz-Alon, I. (2005). The influence of the inoculum source of Rhizoctonia solani on development of black scurf on potato. Journal of Phytopathology, 153(4), 240-244. doi:10.1111/j.1439-0434.2005.00962.x. Twort, F. W. (1915). An investigation on the nature of ultramicroscopic viruses. The Lancet, 186(4814), 1241-1243. doi:10.1016/S0140-6736(01)20383-3. Uribe, D., Ortiz, E., Portillo, M., Bautista, G., & Ceron, J. (1999). Diversidad de Pseudomonas fluorescentes en cultivos de papa de la region cundiboyacense y su actividad antagonista in vitro sobre Rhizoctonia solani. Revista Colombiana Biotecnologia, 2(1), 50-58. Van Breemen, N., Driscoll, C. T., & Mulder, J. (1984). Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 307, 599-604. doi:10.1038/307599a0. Van Elsas, J. D., & Heijnen, C. E. (1990). Methods for the introduction of bacteria into soil: A review. Biology and Fertility of Soils, 10(2), 127-133. doi:10.1007/BF00336248. Van Lenteren, J. C., Bolckmans, K., Kohl, J., Ravensberg, W. J., & Urbaneja, A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 63(1), 39-59. doi:10.1007/ s10526-017-9801-4. Van Veen, J. A., Van Overbeek, L. S., & Van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61(2), 121-135. Vanittanakom, N., Loeffler, W., Koch, U., & Jung, G. (1986). Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, 39(7), 888-901. Velivelli, S. L. S., De Vos, P., Kromann, P., Declerck, S., & Prestwich, B. D. (2014). Biological control agents: from field to market, problems, and challenges. Trends in Biotechnology, 32(10), 493-496. doi:10.1016/j. tibtech.2014.07.002. Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valero, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20. doi:10.1016/j.bej.2007.05.012. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant– pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. doi:10.1016/j.soilbio.2007.07.002. Vinodkumar, S., Nakkeeran, S., Renukadevi, P., & Malathi, V. G. (2017). Biocontrol potentials of antimicrobial peptide producing Bacillus species: Multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8, 446. doi:10.3389/ fmicb.2017.00446. Viterbo, A., & Horwitz, B. A. (2010). Mycoparasitism. En K. Borkovich & D. J. Ebbole (Eds.), Cellular and molecular biology of filamentous fungi (pp. 676-693). Washington, EE. UU.: American Society of Microbiology. doi:10.1128/ 9781555816636.ch42. Walker, J. C., & Snyder, W. C. (1933). Pea wilt and root rots. Madison, EE. UU.: University of Wisconsin Wang, M., Zhang, M., Li, L., Dong, Y., Jiang, Y., Liu, K., ... Fang, X. (2017). Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnology for Biofuels, 10, 99. doi:10.1186/s13068-017-0789-x. Wasson, D. L. (2017). Virgil. Recuperado de https://www. ancient.eu/virgil/. Watson, R. T., Albritton, D. T., Anderson, S. O., & Lee- Bapty, S. (1992). Methyl Bromide: Its Atmospheric Science, Technology and Economics. Nairobi, Kenya: United Nations Environmental Program. Wei, W., Zhu, W., Cheng, J., Xie, J., Jiang, D., Li, G., ... Fu, Y. (2016). Nox complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 6, 24325. doi:10.1038/srep24325. Weindling, R. (1932). Trichoderma lignorum as a parasite of other soil fungi. Phytopahtology, 22, 837-845. Weindling, R. (1934). Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24(11), 1153-1179. Weindling, R. (1941). Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology, 31(11), 991-1003. Weindling, R., & Emerson, O. (1936). The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology, 26, 1068-1070. Welbaum, G. E., Sturz, A. V., Dong, Z., & Nowak, J. (2004). Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Sciences, 23(2), 175-193. doi:10.1080/07352680490433295. Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26(1), 379-407. doi:10.1146/ annurev.py.26.090188.002115. Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250-256. doi:10.1094/ PHYTO-97-2-0250. Weller, D. M. (2015). Take-All Decline and Beneficial Pseudomonads. En B. Lugtenberg (Ed.), Principles of plantmicrobe interactions (pp. 363-370). Cham, Suiza: Springer. doi:10.1007/978-3-319-08575-3_38. Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology, 73(3), 463-469. doi:10.1094/Phyto-73-463. Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010. Weller, D. M., & Thomashow, L. (2016). Contribution of biocontrol agents to sustainable agriculture: Do insights from microbiome research and bca “omics” pay off. iobc Bulletin, 117, 2-6. Wells, H. D., Bel, B. K., & Jaworski, C. A. (1972). Efficacy of Trichoderma harzianun as a biocontrol for Sclerotium rolfsii. Phytopathology, 62, 442-447. doi:10.1094/Phyto-62-442. Whilhite, S., Lumsden, R., & Straney, D. (1994). Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology, 84(8), 816-821. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(Suppl. 1): 487-511. doi:10.1093/jexbot/52.suppl_1.487. Whipps, J. M., & Gerlagh, M. (1992). Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research, 96(11), 897-907. doi:10.1016/ S0953-7562(09)80588-1. Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365- 2672.2008.03906.x. Wilson, P. S., Ahvenniemi, P. M., Lehtonen, M. J., Kukkonen, M., Rita, H., & Valkonen, J. P. T. (2008). Biological and chemical control and their combined use to control different stages of the Rhizoctonia disease complex on potato through the growing season. Annals of Applied Biology, 153(3), 307-320. doi:10.1111/j.1744- 7348.2008.00292.x. Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., & Valkonen, J. P. T. (2007). Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathology, 57(1), 152-161. doi:10.1111/j.1365-3059.2007.01706.x. Wise, C., Falardeau, J., Hagberg, I., & Avis, T. J. (2014). Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology, 104(10), 1036-1041. doi:10.1094/PHYTO-12-13-0336-R. Wood, R. K. S., & Tveit, M. (1955). Control of plant diseases by use of antagonistic organisms. Botanical Review, 21(8), 441-492. Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., ... Yorinori, J. T. (2001). Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Canadian Journal of Plant Pathology, 23(2), 115-121. doi:10.1080/07060660109506918. Wright, J. M. (1954). The production of antibiotics in soil. Annals of Applied Biology, 41(2), 280-289. doi:10.1111/j.1744-7348.1954.tb01121.x. Wright, J. M. (1956). The production of antibiotics in soil. Annals of Applied Biology, 44(4), 461-466. doi:10.1111/ j.1744-7348.1956.tb02140.x. Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1), 27. Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65(3), 1061-1070. Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69(12), 7343-7353. doi:10.1128/aem.69.12.7343-7353.2003. Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biology Reviews, 30(2), 74-90. doi:10.1016/j.fbr.2016.05.001. Zeng, F., Gong, X., Hamid, M. I., Fu, Y., Jiatao, X., Cheng, J., ... Jiang, D. (2012). A fungal cell wall integrity-associated map kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genetics and Biology, 49(5), 347-357. doi:10.1016/j.fgb.2012.02.008. Zeng, L. M., Zhang, J., Han, Y. C., Yang, L., Wu, M.d., Jiang, D. H., ... Li, G. Q. (2014). Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum. Environmental Microbiology, 16(8), 2591-2610. doi:10.1111/1462- 2920.12409. Zhang, B., Dong, C., Shang, Q., Han, Y., & Li, P. (2013). New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochimica et Biophysica Acta, 1828(9), 2230-2237. doi:10.1016/j.bbamem.2013.05.033. Zhang, J., Howell, C. R., & Starr, J. L. (1996). Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Science and Technology, 6(2), 175-188. doi:10.1080/09583159650039377. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess application/pdf application/pdf Colombia ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
score 12,131701