Propuesta de índices multidimensionales para la evaluación del programa Ser Pilo Paga

En diferentes estudios las unidades estadísticas se describen en dos tipos de variables: cuantitativas y cualitativas. Un ejemplo común donde se observa este tipo de variables son los instrumentos de recolección de información conocidos como encuestas, por lo general, en estos instrumentos existen n...

Descripción completa

Detalles Bibliográficos
Autor Principal: Buitrago Chinchilla, Edwin Leonardo
Otros Autores: Babativa Márquez, José Giovany
Formato: Desconocido (Unknown)
Lenguaje:Español (Spanish)
Publicado: Universidad Santo Tomás 2019
Materias:
Acceso en línea:http://hdl.handle.net/11634/14811
Descripción
Sumario:En diferentes estudios las unidades estadísticas se describen en dos tipos de variables: cuantitativas y cualitativas. Un ejemplo común donde se observa este tipo de variables son los instrumentos de recolección de información conocidos como encuestas, por lo general, en estos instrumentos existen numerosas preguntas cerradas que suelen ser reunidas en varios conjuntos que pueden ser de naturaleza cuantitativa o cualitativa. Una técnica multivariada que analiza simultáneamente este tipo de variables es el análisis factorial para datos mixtos (AFDM), esta metodología consiste en transformar las variables cuantitativas en cualitativas, desglosando su intervalo de variación en clases produciendo una tabla homogénea resultante que permite implementar un análisis de correspondencia múltiple (ACM), sin embargo, la noción de agrupación de variables no es una propiedad del AFDM. Si el instrumento cumple esta característica (la agrupación de variables en los sujetos del análisis) se considera necesario hacer uso del análisis factorial múltiple (AFM) ya que este permite analizar grupos de variables cuantitativas y/o cualitativas siendo ampliamente útil cuando el número de variables de cada grupo es muy diferente . Extender el AFM a grupos de variables cualitativas o mixtas (de ambas naturalezas) se conoce como un análisis factorial múltiple para datos mixtos (AFMDM), el cual combina tanto el ACM, el AFDM y el AFM, esta técnica resalta los principales factores de variabilidad de los individuos, descritos estos, de manera equilibrada por los grupos de variables. Aplicando el AFMDM al instrumento de la línea base del programa Ser Pilo Paga, se crearon cuatro índices multidimensionales que resumen 9 grupos temáticos compuestos de 111 variables de tipo cuantitativo y cualitativo, caracterizando un total de 1.487 jóvenes, los cuales 682 son elegibles para hacer parte del programa y 805 no lo son. Se propone para la evaluación de impacto, un estimador de diferencia en diferencia aplicado a los cuatro índices multidimensionales.