Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”

Surface enhanced Raman spectroscopy (SERS) of nanostructured materials is a powerful technique that allows to reach ultrahigh levels of detection of several analytes. In the present study it was possible to identify the bacteria E. coli by using a novel nanostructured platform based on silver-capped...

Descripción completa

Detalles Bibliográficos
Autores Principales: Castillo-León, John Jairo, Rincón-Orozco, Bladimiro, Cabanzo-Hernández, Rafael
Formato: Artículo (Article)
Lenguaje:Español (Spanish)
Publicado: Universidad Santo Tomás. Seccional Bucaramanga 2017
Materias:
id ir-11634-10965
recordtype dspace
institution Universidad Santo Tomas
collection DSpace
language Español (Spanish)
topic Plataformas nanoestructuradas de plata; SERS; bacteria; nanotecnología
Silver nanostructured platforms; SERS; bacteria; nanotechnology
spellingShingle Plataformas nanoestructuradas de plata; SERS; bacteria; nanotecnología
Silver nanostructured platforms; SERS; bacteria; nanotechnology
Castillo-León, John Jairo
Rincón-Orozco, Bladimiro
Cabanzo-Hernández, Rafael
Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”
description Surface enhanced Raman spectroscopy (SERS) of nanostructured materials is a powerful technique that allows to reach ultrahigh levels of detection of several analytes. In the present study it was possible to identify the bacteria E. coli by using a novel nanostructured platform based on silver-capped nanopillars (AgNP) and SERS technique. AgNPs were fabricated by ion reactive etching and deposition of silver layers. The bacteria culture were prepared in Luria-Bertani (LB) medium at 37° by 4 hours. 5 μL of the bacteria were deposited on top of the surface of AgNPs and let it dry for 30 minutes. Subsequently the AgNP-bacteria system was analysed by Raman spectroscopy. A typical band of E. coli at 731 cm-1 was identified and this Raman vibration was used as a marker peak to detect the bacteria. Finally the novel AgNP could be used as a potential biosensor to detect nosocomial bacteria in intra-hospital environments.
format Artículo (Article)
author Castillo-León, John Jairo
Rincón-Orozco, Bladimiro
Cabanzo-Hernández, Rafael
author_facet Castillo-León, John Jairo
Rincón-Orozco, Bladimiro
Cabanzo-Hernández, Rafael
author_sort Castillo-León, John Jairo
title Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”
title_short Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”
title_full Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”
title_fullStr Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”
title_full_unstemmed Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”
title_sort silver nanostructured platforms for detecting escherichia coli through raman scattering spectroscopy “proof of concept”
publisher Universidad Santo Tomás. Seccional Bucaramanga
publishDate 2017
_version_ 1712106060457705472
spelling ir-11634-109652019-11-14T21:32:47Z Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept” Plataformas nanoestructuradas de plata para identificación cualitativa de Escherichia coli mediante espectroscopia Raman intensificada por efecto de superficie “prueba de concepto del sistema” Castillo-León, John Jairo Rincón-Orozco, Bladimiro Cabanzo-Hernández, Rafael Plataformas nanoestructuradas de plata; SERS; bacteria; nanotecnología Silver nanostructured platforms; SERS; bacteria; nanotechnology Surface enhanced Raman spectroscopy (SERS) of nanostructured materials is a powerful technique that allows to reach ultrahigh levels of detection of several analytes. In the present study it was possible to identify the bacteria E. coli by using a novel nanostructured platform based on silver-capped nanopillars (AgNP) and SERS technique. AgNPs were fabricated by ion reactive etching and deposition of silver layers. The bacteria culture were prepared in Luria-Bertani (LB) medium at 37° by 4 hours. 5 μL of the bacteria were deposited on top of the surface of AgNPs and let it dry for 30 minutes. Subsequently the AgNP-bacteria system was analysed by Raman spectroscopy. A typical band of E. coli at 731 cm-1 was identified and this Raman vibration was used as a marker peak to detect the bacteria. Finally the novel AgNP could be used as a potential biosensor to detect nosocomial bacteria in intra-hospital environments. La espectroscopia Raman intensificada por efecto de superficie (SERS) de materiales nanoestructurados es una técnica ultrasensible que permite alcanzar niveles de detección extremadamente bajos en la determinación de diferentes analitos. En este estudio se logró identificar cualitativamente la bacteria E. coli, utilizando plataformas nanoestructuradas de plata, mediante la técnica SERS. Las plataformas nanoestructuradas de plata (AgNP) fueron fabricadas por la técnica de grabado mediante iones reactivos con posterior deposición de una capa metálica de plata. Las bacterias fueron preparadas en medio Luria-Bertani (LB) a 37°C por 4 horas. De este cultivo de bacterias 5 uL fueron depositados sobre la superficie de las AgNP, dejándose secar por 30 min. Posteriormente, el sistema AgNP-bacteria fue analizado mediante espectroscopia Raman. La identificación de la banda Raman a 731 nm típica de la E. coli sobre las AgNP permitió identificar cualitativamente la bacteria, lo que brinda la posibilidad de utilizar las plataformas como potenciales biosensores ultrasensibles de bacterias nosocomiales en ambientes intrahospitalarios. 2017-07-01 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1771 10.15332/iteckne.v14i2.1771 spa http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1771/1359 /*ref*/M.S. Schmidt, J. Hübner, A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy”, Adv Mat; 10, pp. 11-18, 2011. /*ref*/A.J. Driscoll, M.H. Harpster, P.A. Johnson, “The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges”, Phys Chem Phys Chem 2013; 15, pp. 20415-20433. doi: 10.1039/c3cp52334a /*ref*/W.R. Premasiri, N. Krieger, W.R. Associates, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria”, J Chem Phys B; 109, pp. 312-320, 2005. /*ref*/J. Chen, X. Wu, Y. Huang, Y. Zhao, “Chemical Detection of E. coli using SERS active filters with silver nanorod array”, Sensors Actuators B Chem; 191, pp. 485-490, 2014 /*ref*/J.J. Castillo, T. Rindzevicius, K. Wu et al. “Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory”, J Raman Spect; 46, pp. 1087-1094, 2015. /*ref*/J.J. Castillo, T. Rindzevicius et al., “Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy Regular Paper”, Nanomat Nanotechn; 5: 1-7, 2015. /*ref*/J. Borrero, Y. Chen, G. Dunny, Y. Kaznessis, “Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci”, ACS Synthet. Biol.; 4, pp. 299-306, 2015. /*ref*/C. Kotanen, L. Martínez, R. Álvarez, J. Simecek, “Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum”. Sens. Biosens. Res.; 8, pp. 20-26, 2016. /*ref*/H. Zhou, D. Yang, N.P. Ivleva et al., “SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles”, Anal Chem; 86, pp. 1525-1536, 2014. /*ref*/D. Graham, K. Faulds, “Chemical Science Simultaneous detection and quanti fi cation of three bacterial meningitis pathogens by SERS”. Chem Sci; 5, pp. 1030-1040, 2014. /*ref*/B. Allegranzi, Report on the Burden of Endemic Health Care-Associated Infection Worldwide Clean Care is Safer Care. WHO 2011, pp. 1-40. /*ref*/Secretaría de Salud de Bogotá, Sistema de vigilancia epidemiológica de infecciones intrahospitalarias. Secretaria de Salud Distrital de Bogotá, 1984; pp. 1-35 /*ref*/K. Kneipp, H. Kneipp, B. Kartha et al., “Detection and identification of a single DNA base molecule using surface-enhanced Raman”, Phys Rev E; 57, pp. 6281-6290, 1998. /*ref*/M. Culha, M. Kahraman, C. Dilek, “Rapid identification of bacteria and yeast using surface-enhanced Raman scattering”, Surf Interf Anal; 42, pp. 462-465, 2010. /*ref*/H. Zhou, D. Yang, N. Ivleva, N. Mircescu, R. Niessner, C. Haish, “SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles”, Anal Chem; 86, pp. 1525-1533, 2014. /*ref*/R.M. Jarvis, R. Goodacre, “Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy”, Anal Chem; 76, pp. 40-47, 2004. /*ref*/G. McNay, D. Eustace, W.E. Smith et al., “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications”, Appl Spectrosc; 65, pp. 825-37, 2011. /*ref*/I.S. Patel, W.R. Premasiri, D.T. Moir, L.D. Ziegler, “Barcoding bacterial cells: a SERS-based methodology for pathogen identification”, J Raman Spect; 39, pp. 1660-1672, 2008. /*ref*/Y. Wang, K. Lee, J. Irudayaraj, “Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens”, J Phys Chem C; 114, pp. 16122-16128, 2010. Copyright (c) 2018 ITECKNE application/pdf Universidad Santo Tomás. Seccional Bucaramanga ITECKNE; Vol 14, No 2 (2017); 164-169 2339-3483 1692-1798 ITECKNE; Vol 14, No 2 (2017); 164-169
score 12,111491