Sumario: | En este artículo se plasma la implementación del método TAN (del inglés Tree Augmented Naive Bayes), aplicado a la clasificación de datos. TAN constituye una extensión del clasificador Naïve Bayes (NB), cuya idea es construir una red bayesiana un poco más compleja que el NB, pero donde se da un tratamiento especial a la variable clase; por tanto, se enmarca en la filosofía de aprender redes bayesianas orientadas a clasificación. Con TAN se pretende mantener la simplicidad computacional del clasificador NB pero intentando mejorar la efectividad de la clasificación. Para ello, en lugar de suponer todas las variables independientes, dada la clase, se admiten ciertas dependencias entre los atributos. En concreto, se supone que los atributos constituyen una red bayesiana con forma de árbol. Este algoritmo se basa en el concepto de información mutua.
|