Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).

Actualmente, Colombia, es considerado como el primer productor de palma de aceite (Elaeis guineensis) en América Latina, su cultivo y producción se ha expandido considerablemente en el territorio, a su vez la actividad agroindustrial ha tenido relevancia a nivel ambiental, en donde la ge...

Descripción completa

Detalles Bibliográficos
Autor Principal: Montoya Centeno, Marcela Michela
Formato: Trabajo de grado (Bachelor Thesis)
Publicado: 2023-06-13
Materias:
Acceso en línea:https://hdl.handle.net/10901/26899
id ir-10901-26899
recordtype dspace
spelling Chaparro Granados, Lilian Astrith
Montoya Centeno, Marcela Michela
Socorro
2023-10-04T13:40:19Z
2023-10-04T13:40:19Z
2023-06-13
https://hdl.handle.net/10901/26899
Actualmente, Colombia, es considerado como el primer productor de palma de aceite (Elaeis guineensis) en América Latina, su cultivo y producción se ha expandido considerablemente en el territorio, a su vez la actividad agroindustrial ha tenido relevancia a nivel ambiental, en donde la generación de residuos sólidos y líquidos ha sido evidente; puesto que el 72% del producto cosechado se convierte en residuo. Por lo tanto, en este artículo de revisión, se presenta una visión general de la cantidad, tipo de residuo y alternativas de tratamiento actuales para el aprovechamiento de la biomasa residual producida por el sector palmero; en donde se pueden obtener diferentes productos de valor agregado, como bioenergía (biogás, biodiesel, bioaceite, bioetanol); biocompuestos (carbón activado, filtros, biopelletes), biofertilizantes, bioactivos y compuestos como la celulosa entre otros; que contribuyan a la producción sostenible, con cero residuos.
Universidad Libre Seccional Socorro -- Facultad de Ingeniería y Ciencias Agropecuarias -- Especialización en Gestión Ambiental
Currently, Colombia is considered the first producer of oil palm (Elaeis guineensis) in Latin America, its cultivation and production have expanded considerably in the territory, in turn, the agro-industrial activity has had relevance at the environmental level, where the generation of solid and liquid waste has been evident; since 72% of the harvested product becomes waste. Therefore, in this review article, an overview of the amount, type of waste, and current treatment alternatives for the use of residual biomass produced by the palm sector are presented; where different value-added products can be obtained, such as bioenergy (biogas, biodiesel, bio-oil, bioethanol); biocomposites (activated carbon, filters, pellets), biofertilizers, bioactive and compounds such as cellulose, among others; that contribute to sustainable production, with zero waste.
PDF
Biomasa residual
Bio-economía circular
Palma de aceite
Residuos agroindustriales
Tratamiento
Subproductos
Utilización
Residual biomass
Circular bio-economy
Oil palm
Agro-industrial waste
Treatment
By-products
Utilization
Medio ambiente
Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
Environmental alternatives for the use agro-industrial solid residues from oil palm (Elaeis guineensis).
info:eu-repo/semantics/openAccess
Tesis de Especialización
info:eu-repo/semantics/bachelorThesis
Anima Antwi, L. A., Nimoh, F., Agyemang, P., & Akurugu Apike, I. (2023). Perception and adoption of free fatty acid reduction techniques by small scale palm oil processors: Evidence from Ghana. Journal of Agriculture and Food Research, 11. https://doi.org/10.1016/j.jafr.2022.10 0462
Lok, X., Chan, Y. J., & Foo, D. (2020). Simulation and optimisation of full scale palm oil mill effluent (POM treatment plant with biogas production. Journal of Water Process Engineering, 38. https://doi.org/10.1016/j.jwpe.2020.1 01558
Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2012). Use of Agro Industrial Wastes in Solid-State Fermentation Processes. En K.-Y. Show (Ed.), Industrial Waste. https://www.intechopen.com/chapter s/30860
Nor Faizah, J., Noorshamsiana , A. W., Wan Hasamudin, W. H., Astimar, A. A., Kamarudin, H., & Ab Gapor, M. T. (2020). Production of phytosterols mix from palm fatty acid distillate (PFAD) through multi-staged extraction processes. Engineering Science and Technology. 736. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757- 899X/736/2/022047
Obi, O. F. (2015). Evaluation of the physical properties of composite briquette of sawdust and palm kernel shell. Biomass Conversion and Biorefinery, 5, 271–277. https://doi.org/10.1007/s13399-014- 0141-7
Soong Ng, B. Y., Chyuan Ong, H., Nang Lau, H. L., Shafizah Ishak, N., Elfasakhany, A., & Voon Lee, H. (2022). Production of sustainable two-stroke engine biolubricant ester base oil from palm fatty acid distillate. Industrial Crops and Products, 175. https://doi.org/10.1016/j.indcrop.202 1.114224
Vargas Mira, A., Zuluaga García, C., & González Delgado, Á. D. (2019). A Technical and Environmental Evaluation of Six Routes for Industrial Hydrogen Production from Empty Palm Fruit Bunches. ACS Omega , 4(13), 15457-15470. https://doi.org/10.1021/acsomega.9b 01683
Yahya, A., Khalid, N. A., & Salleh, M. M. (2022). Biocompost from Oil Producing Plants. En S. Abd Aziz, M. Gozan, M. F. Ibrahim, & L. Y. Phang (Edits.), Biorefinery of Oil Producing Plants for Value-Added Products. https://doi.org/10.1002/97835278307 56.ch30
Abdurahman, N. H., Rosli, R. M., & Azhari, N. H. (2013). La evaluación del desempeño de los métodos anaeróbicos para el tratamiento de efluentes de molinos de aceite de palma (POME): una revisión. En . W. Trevelyan Quinn (Ed.), International Perspectives on Water Quality Management and Pollutant Control. https://doi.org/10.5772/54331
Agronet . (2021). Red de información y comunicación del sector agropecuario colombiano. Reporte:Área, Producción y Rendimiento Nacional por Cultivo: Caso palma de aceite : https://www.agronet.gov.co/estadisti ca/Paginas/home.aspx?cod=1
Akpan Sunday , N. (2022). Oil Palm Empty Fruit Bunches (OPEFB) – Alternative Fibre Source for Papermaking. En H. Kamyab (Ed.), Elaeis guineensis. https://doi.org/10.5772/intechopen.9 8256
Alkarimiah, R., Makhtar, M. M., Aziz, H. A., Vesilind, P. A., Wang, L. K., & Hung, Y. T. (2022). Energy Recovery from Solid Waste. En L. K. Wang, M. S. Wang, & Y. T. Hung (Edits.), Solid Waste Engineering and Management. Handbook of Environmental Engineering (págs. 231–297). Springer, Cham. https://doi.org/10.1007/978-3-030- 96989-9_5
Andreichenko, A., Andreichenko, S., & Smentyna, N. (2021). Ensuring Biosphere Balance in the Context of Agricultural Waste Management. Philosophy and Cosmology, 26, 46- 61. https://doi.org/10.29202/phil cosm/26/4
Ariffin , M. A., Wan Mahmood, W. M., & Yramizi Mohamed , Z. H. (2017). Medium-scale gasification of oil palm empty fruit bunch for power generation. Journal of Material Cycles and Waste Management , 19, 1244–1252. https://doi.org/10.1007/s10163-016- 0518-8
Athoillah, A. Z., & Ahmad, F. B. (2022). Biodiesel Production from Bioremediation of Palm Oil Mill Effluent via Oleaginous Fungi. Clean – Soil, Air, Water, 50(4). https://doi.org/10.1002/clen.2022000 25
Baruah, B. K. (2011). Agribusiness Management, its meaning, nature and scope, types of management tasks and responsibilities. (A. A. University, Ed.) https://www.virtualpro.co/biblioteca/ gestion-en-la-agroindustria-su-significado-naturaleza-y-alcances tipos-de-tareas-y-responsabilidades de-gestion
Borsellino, V. (2019). Agribusiness. En W. Leal Filho, A. Azul, L. Brandli, P. Özuyar, T. Wall, & C. Springer (Ed.), Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. https://doi.org/https://doi.org/10.100 7/978-3-319-69626-3_1-1
Cantão Freitas,, L., Rodrigues Barbosa, J., Caldas da Costa, A. L., Figueiredo Bezerra, F. W., Holanda Pinto, R. H., & de Carvalho Junior, R. N. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169. https://doi.org/https://doi.org/10.101 6/j.resconrec.2021.105466
Coral Medina, J. D., Magalhães Júnior, A. I., Zamora, H. D., & Quijano Melo, J. D. (2019). Oil palm cultivation and production in South America: status and perspectives. Biofuels, Bioprod. Bioref, 13(5), 1202-1210. https://doi.org/10.1002/bbb.2013
DANE. (2020). Encuesta Nacional Agropecuaria (ENA) 2019. Bogotá: Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/e stadisticas-por tema/agropecuario/encuesta nacional-agropecuaria-ena
DANE. (2022). Economía Circular Sexto Reporte:2022. (C. A. Cely Ruiz, G. A. Quintero Hernández, & M. N. Dimaté Echeverry, Edits.) Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/e stadisticas-por tema/ambientales/economia circular/reportes-de-economia circular
Dirkes,, R., Neubauer, P. R., & Rabenhorst, J. (2021 ). Pressed sap from oil palm (Elaeis guineensis) trunks: a revolutionary growth medium for the biotechnological industry? Biofuels, Bioprod. Bioref, 15(3), 931-944. https://doi.org/10.1002/bbb.2201
Djun Lee , M., Amirah Mohamad, N. F., Abu Hassan, N., & San Lee, P. (2021). Performance of Oil Palm Frond Fiber as Filtration Material in Palm Oil Mill Effluent Treatment. IOP Conference Series: Earth and Environmental Science, 690. https://doi.org/10.1088/1755- 1315/690/1/012039
Dungani, R., Pingkan, A., Aprilia, S., Karnita , Y., Karliati, T., Suwandhi, I., & Sumardi, I. (2018). Biomaterial from Oil Palm Waste: Properties, Characterization and Applications. https://doi.org/10.5772/intechopen.7 6412
Elbersen, W. (2013). Residuos de aceite de palma disponibles para la bioeconomía, junto con el reciclaje de nutrientes. Palmas, 34(Especial. Tomo II), 61.
Erfani Jazi, M., Narayanan , G., Aghabozorgi, F., Farajidizaji , B., Aghaei, A., Kamyabi, M. A., Navarathna, C. M., & Mlsna, T. E. (2019). Structure, chemistry and physicochemistry of lignin for material functionalization. SN Applied Sciences, 1(Article number: 1094). https://doi.org/10.1007/s42452-019- 1126-8
Fahma, F., Iwamoto, S., Hori, N., Tadahisa, I., & Takemura, A. (2010). Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit bunch (OPEFB). Cellulose, 17, 977– 985. https://doi.org/10.1007/s10570- 010-9436-4
Febriani, A., Syafriana, V., Afriyando , H., & Djuhariah , Y. S. (2019). The Utilization of Oil Palm Leaves (Elaeis guineensis Jacq.) Waste as an Antibacterial Solid Bar Soap. IOP Conference Series: Earth and Environmental Science, 572. https://doi.org/10.1088/1755- 1315/572/1/012038
Fedepalma , & Cenipalma . (2001). El cultivo de la palma de aceite y su beneficio. Guía para el nuevo palmicultor. Bogotá: Federación Nacional de Cultivadores de Palma de Aceite y Centro de Investigación en Palma de Aceite.
Fedepalma. (2007). La Agroindustria de la Plama de Aceite en Colombia. Federación Nacional de Cultivadores de Palma de Aceite.
Fedepalma. (2022). Anuario Estadístico: Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo 2017-2021. Federación Nacional de Cultivadores de Palma de Aceite. https://publicaciones.fedepalma.org/index.php/anuario/issue/view/1620/1 78
Feofilova, E. P., & Mysyakina, I. S. (2016). Lignin: Chemical structure, biodegradation, and practical application (a review). Applied Biochemistry and Microbiology, 52(6), 559–569. https://doi.org/10.1134/S0003683816 060053
Gore, A. J., & Bhagwat, S. S. (2022). Separation of tocol (tocopherol & tocotrienol) and phytosterols from palm fatty acid distillate by saponification and purification by low temperature solvent crystallization. Journal of Food Science and Technology, 59, 2962–2971. https://doi.org/10.1007/s13197-022- 05402-7
Handique, S., Saha, A., Saikia, K. K., & Gogoi, N. (2023). Agriculture Wastes: Generation and Sustainable Management. En S. Singh, P. Singh, A. Sharma, & M. Choudhury (Edits.), Agriculture Waste Management and Bioresource (págs. 78-104). John Wiley & Sons Ltd. https://doi.org/10.1002/97811198084 28.ch4
Hassan, N., Abdullah, R., Khadiran, T., Elham, P., & Vejan , P. (2021). Biochar derived from oil palm trunk as a potential precursor in the production of high-performance activated carbon. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021- 01797-z
Henson, I. E., & Chang, K. C. (2010). Evaluación del impacto de la producción de aceite de palma sobre el calentamiento global: (I) Un modelo de campo. Palmas, 31(3), 47- 61. https://publicaciones.fedepalma.org/i ndex.php/palmas/article/view/1496/1 496
Hussain, M., Tufa, L. D., Yusup, S., Zabiri, H., & Taqvi, S. A. (2017). Aspen Plus® Simulation Studies of Steam Gasification in Fluidized Bed Reactor for Hydrogen Production Using Palm Kernel Shell. En M. Mohamed Ali, H. Wahid, N. Mohd Subha, S. Sahlan, M. Yunus, & A. Wahap (Edits.), Modeling, Design and Simulation of Systems (Vol. 751). Singapore: Springer. https://doi.org/10.1007/978-981-10- 6463-0_54
Idayu Tahir, N., Shaari, K., Abas, F., Ahmad Parveez, G. K., Ishak, Z., & Salamah Ramli, U. (2012). Characterization of Apigenin and Luteolin Derivatives from Oil Palm (Elaeis guineensis Jacq.) Leaf Using LC–ESI-MS/MS. Journal of Agricultural and Food Chemistry , 60(45), 11201-11210. https://doi.org/10.1021/jf303267e
Isogai, A. (2014). Cellulose. En S. Kobayashi, & K. Müllen (Edits.), Encyclopedia of Polymeric Nanomaterials (págs. 1–11). Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3-642- 36199-9_320-1
Lam, J. E., Rahman Mohamed, A., Kay Lup, A. N., & Koh, M. K. (2022). Palm fatty acid distillate derived biofuels via deoxygenation: Properties, catalysts and processes. Fuel Processing Technology, 236. https://doi.org/10.1016/j.fuproc.2022 .107394
López Macías, F. J., & Castrillón, P. (2009). Evolución y desarrollo de la agroindustria (AI), en Colombia. Universidad de Manizales. https://www.virtualpro.co/biblioteca/ evolucion-y-desarrollo-de-la agroindustria-ai-en-colombia
Mannan, M. A., & Ganapathy, C. (2004). Concrete from an agricultural waste oil palm shell (OPS). Building and Environment, 38(4). https://doi.org/10.1016/j.buildenv.20 03.10.007
Maulina, S., & Anwari, F. N. (2018). Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator. IOP Conference Series: Materials Science and Engineering, 309. https://doi.org/10.1088/1757- 899X/309/1/012087
Mohanty, A., Prangya Ranjan, R., Dubey, B., Singh Meena, S., Pal , P., & Goel, M. (2022). A critical review on biogas production from edible and non edible oil cakes. Biomass Conversion and Biorefinery, 12, 949–966 . https://doi.org/10.1007/s13399-021- 01292-5
Norhazimah , A. H., Siti , F., Aida, M., Dilaeleyana, A. B., & Nur Shahirah, M. A. (2020). Direct Fermentation of Oil Palm (Elaeis guineensis) Trunk Sap to Bioethanol by Saccharomyces cerevisiae. 2nd International Conference on Materials Technology and Energy 6-8 November 2019, Miri, Sarawak, Malaysia. 943. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757- 899X/943/1/012012
Ofori Boateng, C., & Lee , K. T. (2013). Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochemistry Reviews, 12(1), 173– 190. https://doi.org/10.1007/s11101- 013-9270-z
Okolie, J. A., Nanda , S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12(5), 2145– 2169 . https://doi.org/10.1007/s12649-020- 01123-0
Olatunji, K. O., Ahmed, N. A., & Ogunkunle , O. (2021). Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for Biofuels, 14(159). https://doi.org/10.1186/s13068-021- 02012-x
Osman, M. S., Ting, D. S., & Cheong, K. Y. (2022). Development of self sustainable pyrolysis system to produce porous biochar from palm kernel shell. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022- 02668-x
PNUMA. (2021). Informe sobre el índice de desperdicio de alimentos 2021. Nairobi : Programa de las Naciones Unidas para el Medio Ambiente. https://www.unep.org/resources/repo rt/unep-food-waste-index-report 2021
Poku, K. (2002). Small-Scale Palm Oil Processing in Africa. FAO Agricultural Services Bulletin 148, Food and Agriculture Organization Of The United Nations, Roma. https://www.fao.org/3/Y4355E/y435 5e00.htm#Contents
Rahayu , D. E., Karnaningroem, N., Altway , A., & Slamet, A. (2021). Utilization of oil palm empty fruit bunches biomass through slow pyrolysis process. 4th International Conference on Bioscience and Biotechnology 16- 18 August 2021, Indonesia (Virtual). 913. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755- 1315/913/1/012018
Ribeiro Martins, J., Manabu Abe, M., & Brienzo, M. (2022). Chemical Modification Strategies for Developing Functionalized Hemicellulose: Advanced Applications of Modified Hemicellulose. En M. Brienzo (Ed.), Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy. Clean Energy Production Technologies. (págs. 171–205). Singapore: Springer. https://doi.org/10.1007/978-981-16- 3682-0_6
Romero Peláez, R. D., Chaves Oliveira, M. E., Gerard Miller, R. N., Moreira de Almeida, J. R., & Gonçalves de Siqueira, F. (2022). Biotechnological valorization of lignocellulosic residues from the oil palm industry: status and perspectives. Biomass Conversion and Biorefinery . https://doi.org/10.1007/s13399-022- 02637-4
Rupani, P. F., Embbrandiri, A., & Ibrahim, M. H. (2017). Recycling of palm oil industrial wastes using vermicomposting technology: its kinetics study and environmental application. Environmental Science and Pollution Research , 24, 12982– 12990. https://doi.org/10.1007/s11356-017- 8938-0
Samanta, P., Senapati, T., Dey, S., & Ghosh, A. R. (2023). An Overview of Biomass Conversion from Agricultural Waste. En S. Singh, P. Singh, A. Sharma, & M. Choudhury (Edits.), Agriculture Waste Management and Bioresource (págs. 46-77). John Wiley & Sons Ltd. https://doi.org/10.1002/97811198084 28.ch3
Saval, S. (2012). Aprovechamiento de Residuos Agroindustriales: Pasado, Presente y Futuro. Biotecnología, 16(2), 14-46. https://smbb.mx/wp content/uploads/2017/10/Revista_20 12_V16_n2.pdf
Shawon Mahmud, M., & Phin Chong, K. (2021). Formulation of biofertilizers from oil palm empty fruit bunches and plant growth-promoting microbes: A comprehensive and novel approach towards plant health. Journal of King Saud University - Science, 33(8). https://doi.org/10.1016/j.jksus.2021. 101647
Sispa . (2021). Sistema de Información Estadística del Sector Palmero. Evolución histórica del número de municipios con cultivos de Palma de Aceite en Colombia: http://sispaweb.fedepalma.org/sispa web/default.aspx?Control=Pages/are as
Soo, Y. T., Ng, S. W., Tang, T. K., Ab Karim, N. A., Phuah, E. T., & Lee, Y. Y. (2021). Preparation of palm (Elaeis oleifera) pressed fibre cellulose nanocrystals via cation exchange resin: characterisation and evaluation as Pickering emulsifier. Science of Food and Agriculture, 101(10), 4161- 4172. https://doi.org/10.1002/jsfa.11054
Tan, Y. A., Sambanthamurthi, R., Sundram, K., & Wahid, M. B. (2007). Valorisation of palm by-products as functional components. European Journal of Lipid Science and Technology , 109(4), 380-393. https://doi.org/10.1002/ejlt.20060025 1
Trevors, J., & Saier, M. (2010). AgriBusiness versus AgriCulture. Agua Aire Suelo Contaminación , 205((Suplemento 1)), 35–36. https://doi.org/https://doi.org/10.100 7/s11270-007-9431-z
Ugwu, S. C., Inegbenebor, A. O., Fayomi, O., & Udoye, N. E. (2021). Preparation of Carbon Brushes from Agro-Waste Materials Palm Kernels Shells for Automobile Industry. International Conference on Engineering for Sustainable World (ICESW 2020) 10th-14th August 2020, Ota, Nigeria. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757- 899X/1107/1/012188
Umar, H. A., Sulaiman, S. A., Ahmad, R. K., & Tamili, S. N. (2019). Characterisation of oil palm trunk and frond as fuel for biomass thermochemical. IOP Conference Series: Materials Science and Engineering, 863. https://doi.org/10.1088/1757- 899X/863/1/012011
Umar, H. A., Sulaiman, S. A., Said, M., & Ahmad, R. K. (2020). Palm Kernel Shell as Potential Fuel for Syngas Production. En S. S. Emamian, M. Awang, & F. Yusof (Edits.), Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering. Singapore: Springer. https://doi.org/10.1007/978-981-15- 5753-8_25
Uraki, Y., & koda , k. (2014). Lignin. En S. Kobayashi , & K. Müllen (Edits.), Encyclopedia of Polymeric Nanomaterials. Heidelberg, Berlin : Springer. https://doi.org/10.1007/978-3-642- 36199-9_325-1
Vandamme , E. J. (2009). Agro-Industrial Residue Utilization for Industrial Biotechnology Products. En P. Nigam, & A. Pandey (Edits.), Biotechnology for Agro-Industrial Residues Utilisation (Vol. 56, págs. 3- 11). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020- 9942-7_1
Wahab, R., Mat Rasat, M. S., Mohd Fauzi, N., Saiful Sulaiman, M., Samsi, H. W., Mokhtar, N., Mohd Ghani , R. S., & Haziq Razak, M. (2022). Processing and Properties of Oil Palm Fronds Composite Boards from Elaeis guineensis. En H. Kamyab (Ed.), Elaeis guineensis. https://doi.org/10.5772/intechopen.9 8222
Wistara , N. J., Diputra, P., & Hendra, P. (2021). Biopellet from demineralized oil palm trunk. The 13th International Symposium of Indonesian Wood Research Society 2 September 2021, Mataram, Indonesia. 891. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755- 1315/891/1/012022
Yafetto, L., Tawia Odamtten, G., & Wiafe Kwagyan, M. (2023). Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.202 3.e14814.
institution Universidad Libre de Colombia
collection DSpace
title Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
spellingShingle Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
Montoya Centeno, Marcela Michela
Biomasa residual
Bio-economía circular
Palma de aceite
Residuos agroindustriales
Tratamiento
Subproductos
Utilización
Residual biomass
Circular bio-economy
Oil palm
Agro-industrial waste
Treatment
By-products
Utilization
Medio ambiente
title_short Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
title_full Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
title_fullStr Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
title_full_unstemmed Alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (Elaeis guineensis).
title_sort alternativas ambientales para el aprovechamiento de residuos sólidos y líquidos agroindustriales provenientes de la palma de aceite (elaeis guineensis).
author Montoya Centeno, Marcela Michela
author_facet Montoya Centeno, Marcela Michela
topic Biomasa residual
Bio-economía circular
Palma de aceite
Residuos agroindustriales
Tratamiento
Subproductos
Utilización
Residual biomass
Circular bio-economy
Oil palm
Agro-industrial waste
Treatment
By-products
Utilization
Medio ambiente
topic_facet Biomasa residual
Bio-economía circular
Palma de aceite
Residuos agroindustriales
Tratamiento
Subproductos
Utilización
Residual biomass
Circular bio-economy
Oil palm
Agro-industrial waste
Treatment
By-products
Utilization
Medio ambiente
publishDate 2023-06-13
format Trabajo de grado (Bachelor Thesis)
title_alt Environmental alternatives for the use agro-industrial solid residues from oil palm (Elaeis guineensis).
description Actualmente, Colombia, es considerado como el primer productor de palma de aceite (Elaeis guineensis) en América Latina, su cultivo y producción se ha expandido considerablemente en el territorio, a su vez la actividad agroindustrial ha tenido relevancia a nivel ambiental, en donde la generación de residuos sólidos y líquidos ha sido evidente; puesto que el 72% del producto cosechado se convierte en residuo. Por lo tanto, en este artículo de revisión, se presenta una visión general de la cantidad, tipo de residuo y alternativas de tratamiento actuales para el aprovechamiento de la biomasa residual producida por el sector palmero; en donde se pueden obtener diferentes productos de valor agregado, como bioenergía (biogás, biodiesel, bioaceite, bioetanol); biocompuestos (carbón activado, filtros, biopelletes), biofertilizantes, bioactivos y compuestos como la celulosa entre otros; que contribuyan a la producción sostenible, con cero residuos.
geographic_facet Socorro
url https://hdl.handle.net/10901/26899
_version_ 1779706785525923840
score 12,131701