Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda
CD-T 363.728 4 G588; 34 p
Autores Principales: | , |
---|---|
Formato: | Trabajo de grado (Bachelor Thesis) |
Lenguaje: | Español (Spanish) |
Publicado: |
Universidad Libre Seccional Pereira
2018
|
Materias: |
id |
ir-10901-16153 |
---|---|
recordtype |
dspace |
institution |
Universidad Libre de Colombia |
collection |
DSpace |
language |
Español (Spanish) |
topic |
Contaminación Calidad del agua Aguas residuales Aguas residuales Manejo ambiental Lodos de vaciado Residuos líquidos industriales |
spellingShingle |
Contaminación Calidad del agua Aguas residuales Aguas residuales Manejo ambiental Lodos de vaciado Residuos líquidos industriales González Algecira, Jhonatan Arboleda Ocampo, Ana Milena Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda |
description |
CD-T 363.728 4 G588; 34 p |
format |
Trabajo de grado (Bachelor Thesis) |
author |
González Algecira, Jhonatan Arboleda Ocampo, Ana Milena |
author_facet |
González Algecira, Jhonatan Arboleda Ocampo, Ana Milena |
author_sort |
González Algecira, Jhonatan |
title |
Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda |
title_short |
Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda |
title_full |
Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda |
title_fullStr |
Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda |
title_full_unstemmed |
Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda |
title_sort |
evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en risaralda |
publisher |
Universidad Libre Seccional Pereira |
publishDate |
2018 |
_version_ |
1741872234339762176 |
spelling |
ir-10901-161532022-06-08T19:11:09Z Evaluación y formulación de microorganismos eficaces para el tratamiento de aguas residuales generadas por la industria porcícola en Risaralda González Algecira, Jhonatan Arboleda Ocampo, Ana Milena Contaminación Calidad del agua Aguas residuales Aguas residuales Manejo ambiental Lodos de vaciado Residuos líquidos industriales CD-T 363.728 4 G588; 34 p Objetivos específicos: Caracterizar físico-química y microbiológicamente las aguas residuales de un predio porcícola certificado por el ICA -- Formular diferentes tipos mezclas de microrganismos eficaces (ME) durante el tratamiento de las aguas residuales de esta industria en un predio porcícola certificado por el ica -- Evaluar la eficiencia de las mezclas de micro-organismos estudiadas sobre las características físico-químicas y microbiológicas de las aguas residuales del predio certificado y en estudio -- Identificar las mezclas de micro-organismos más eficientes para recuperar las características físico-químicas y microbiológicas de las aguas residuales del predio certificado en estudio. Universidad Libre Seccional Pereira 2018-01-15T21:23:33Z 2019-10-03T20:49:57Z 2018-01-15T21:23:33Z 2019-10-03T20:49:57Z 2017-08-10 Tesis de Pregrado http://purl.org/coar/resource_type/c_7a1f Tesis Microbiología CD5534 https://hdl.handle.net/10901/16153 spa CD-T 363.728 4 G588;34 p Ahmed, DA., Hussain, T., Rizvi, F., Gilani, G., & Javid, T (2006). Influence of EM on health and immune system of broilers under experimental condition. EM Technology Network Database. Akbar, T. . (1996). Recycling of municipal liquid waste using EM Technology for domestic use. (Msc), University of Agriculture, Faisalabad, Pakistan. APHA. (1992). Standard methods for the examination of water and wastewater. . Washington, USA. Banu, J. R., Esakkiraj, S., Nagendran, R., & Logakanthi, S. (2005). Biomanagement of petrochemical sludge using an exotic earthworm Eudrilus eugineae. J Environ Biol, 26(1), 43-47 Boraste, A., Vamsi, KK., Jhadav, A., Khairnar, Y., Gupta, N., Trivedi, S., . . . Joshi, B. (2009). Bio-fertilizers: A novel tool for agriculture. Int. J. Microbiol. Res, 1(2), 23-31. Bouwman, AFDS., Lee, WAH., Asman, FJ., Dentener, KW., Hoek., Van Der, & Olivier, JGJ. (1997). A global high-resolution emission inventory for ammonia. 11, 561-587 Castilho, A., Cecchi, F., & Alvarez, J. (1997). Combined anaerobic-aerobic system to treat domestic sewage in coastal areas. A Water Res, 31(6), 3057-3063. Cavalcanti, P. (2003). Integrated application of the UASB reactor and ponds for domestic sewage treatment in tropical regions. (PhD), Wageningen University, Wageningen, The Netherlands. Crawford, JH. (1983). Review of composting. Crites, R., & Tchobanoglus, G. (1998). Small and decentraliced wastewater management systems. USA: McGraw-Hill. Chagas, PRR., Tokeshi, H., & Alves, MC. (1999). ffect of calcium on yield of papaya fruits on conventional and organic (Bokashi EM) systems. Paper presented at the Proceedings of the 6th International Conference on Kyusei Nature Farming, South Africa. Cheng, Z., Chen, M., Xie, L., Peng, L., Yang, M., & Li, M. (2015). Bioaugmentation of a sequencing batch biofilm reactor with Comamonas testosteroni and Bacillus cereus and their impact on reactor bacterial communities. Biotechnol Lett, 37(2), 367-373. doi: 10.1007/s10529-014-1684-1 Chernicharo, C., & Nascimento, M. (2001). Feasibility of a pilot-scale UASB/trickling filter system for domestic sewage treatment. Journal Water Science Technology, 44(7), 221-228. Diver, S. (2001). Nature Farming and Effective Microorganisms. Retrieved from Rhizosphere II Dvorak, P., Bidmanova, S., Damborsky, J., & Prokop, Z. (2014). Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3- trichloropropane. Environ Sci Technol, 48(12), 6859-6866. doi: 10.1021/es500396r Formagini, E. L., Marques, F. R., Serejo, M. L., Paulo, P. L., & Boncz, M. A. (2014). The use of microalgae and their culture medium for biogas production in an integrated cycle. Water Sci Technol, 69(5), 941-946. doi: 10.2166/wst.2013.803 Freitag, DG. (2000). The use of Effective Microorganisms (EM) in Organic Waste Management. Fujita, M. (2000). Nature farming practices for apple production in Japan, In Nature farming and microbial applications. (Vol. 3). Gannoun, H., Bouallagui, H., Okbi, A., Sayadi, S., & Hamdi, M. (2009). Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J Hazard Mater, 170(1), 263-271. doi: 10.1016/j.jhazmat.2009.04.111 Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Manag, 29(8), 2227-2239. doi: 10.1016/j.wasman.2009.03.028 Gljzen, H. J. (2002). Anaerobic digestion for sustainable development: a natural approach. Water Sci Technol, 45(10), 321-328 Golovleva, L. A., Aliyeva, R. M., Naumova, R. P., & Gvozdyak, P. I. (1992). Microbial bioconversion of pollutants. Rev Environ Contam Toxicol, 124, 41-78. Goncalves, R., Araujo, V., & Chernicharo, C. . (1998). Association of a UASB reactor and a submerged aerated biofilter for domestic sewage treatment. Journal Water Science Technology, 38(6), 189-195. Guo, J., Peng, Y., Ni, B. J., Han, X., Fan, L., & Yuan, Z. (2015). Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Fact, 14, 33. doi: 10.1186/s12934- 015-0218-4 Hader, U. (1999). Influence of EM on the quality of grass/hay for milk production. Paper presented at the Proceedings of the 6th International Conference on Kyusei Nature Farming, South Africa. Higa, T. (1995). What is EM Technology. Okinawa, Japan: University of Ryukyus, College of Agriculture. Higa, T., & Chinen, N. (1998). EM treatment of odor, wastewater, and environmental problems. Okinawa, Japan: : University of Ryukyus, College of Agriculture. Higa, T., & Wood, M.). Effective microorganisms for sustainable community development: A national case study of cooperative and co-prosperity in North Korea for the preservation of environmental, agricultural, economic, and cultural integrity. Javaid, A., & Bajwa, R. (2011). Field evaluation of eff ective microorganisms (EM ) application for growth, nodulation, and nutrition of mung bean. Turk J Agric For, 35, 443-452. Javaid, A., Bajwa, R., & Anjum, T. (2008). Eff ect of heat sterilization and EM (eff ective microorganisms) application of wheat (Triticum aestivum L.) grown in organic matter amended soils. Cereal Res Comm 36, 489-499. Kaaseva, ME. (2004). Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater – a tropical case study. Water Res, 38(6), 681-687. Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: recent advances and future potential. Environ Int, 35(1), 127-141. doi: 10.1016/j.envint.2008.05.010 Khatoon, N., Naz, I., Ali, M. I., Ali, N., Jamal, A., Hameed, A., & Ahmed, S. (2014). Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment. J Basic Microbiol, 54(7), 739-749. doi: 10.1002/jobm.201300162 Lettinga, G., Man, A., Grin, P., & Hulshof, P. (1987). Anaerobic wastewater treatment as an appropriate technology for developping countries. Tribune Cebedeau, 40(11), 21-32 Li, C., Ren, H., Yin, E., Tang, S., Li, Y., & Cao, J. (2015). Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis. Environ Sci Pollut Res Int, 22(12), 9483-9493. doi: 10.1007/s11356-015-4124-4 Li, WF. (1994). Effect of EM on crop and animal husbandry in China. Paper presented at the Proceedings of 3rd Conference on EM Technology. Lotti, T., Kleerebezem, R., Abelleira-Pereira, J. M., Abbas, B., & van Loosdrecht, M. C. (2015). Faster through training: The anammox case. Water Res, 81, 261- 268. doi: 10.1016/j.watres.2015.06.001 Massoudinejad, M. R., Manshouri, M., Khatibi, M., Adibzadeh, A., & Amini, H. (2008). Hydrogen sulfide removal by Thiobacillus thioparus bacteria on seashell bed biofilters. Pak J Biol Sci, 11(6), 920-924. Mbubligue, SE. (2004). Comparative effectiveness of engineered wetland system in the treatment of anaerobically pre-treated domestic wastewater. Ecol. Eng., 24(15), 269-284. Melse, R. W., & Timmerman, M. (2009). Sustainable intensive livestock production demands manure and exhaust air treatment technologies. Bioresour Technol, 100(22), 5506-5511. doi: 10.1016/j.biortech.2009.03.003 Metcalf., & Eddy. (2003). Wastewater Engineering. Treatment and Reuse. (Fourth edición ed.). New York (USA). McGraw-Hill. Michailides, M. K., Tekerlekopoulou, A. G., Akratos, C. S., Coles, S., Pavlou, S., & Vayenas, D. V. (2015). Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. J Hazard Mater, 281, 95-105. doi: 10.1016/j.jhazmat.2014.08.004 Mohan, S. Venkata, Rao, N. Chandrasekhara, Prasad, K. Krishna, & Sarma, P. N. (2005). Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry, 40(8), 2849-2857. doi: 10.1016/j.procbio.2004.12.027 Morato, J., Codony, F., Sanchez, O., Perez, L. M., Garcia, J., & Mas, J. (2014). Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands. Sci Total Environ, 481, 81-89. doi: 10.1016/j.scitotenv.2014.01.068 Noyola, A. (1996). Anaerobic technology as tool for the sustainable enviroment: the context of Mexico. In I. d. I. Unam. (Ed.), Biodegradación de compuestos orgánicos industriales. Mexico. Olaniran, A. O., Pillay, D., & Pillay, B. (2006). Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere, 63(4), 600-608. doi: 10.1016/j.chemosphere.2005.08.027 Omri, I., Aouidi, F., Bouallagui, H., Godon, J. J., & Hamdi, M. (2013). Performance study of biofilter developed to treat H2S from wastewater odour. Saudi J Biol Sci, 20(2), 169-176. doi: 10.1016/j.sjbs.2013.01.005 Orantes, J. C., & Gonzalez-Martinez, S. (2003). A new low-cost biofilm carrier for the treatment of municipal wastewater in a moving bed reactor. Water Sci Technol, 48(11-12), 243-250 Pierra, M., Carmona-Martinez, A. A., Trably, E., Godon, J. J., & Bernet, N. (2015). Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Bioelectrochemistry. doi: 10.1016/j.bioelechem.2015.02.003 Qasim, G. (1997). Recycling of Sewage Water and Industrial Effluent Using EM Technology. (MSc), University of Agriculture, Faisalabad, Pakistan. Ritter, WF. (1989). Odour control of livestock wastes: State-of-the-art in North America. J. Agric. Eng. Res, 42, 51-62. Sangakkara, R. (2002). The Technology of effective microorganisms – Case Studies of application: Royal Agricultural College, Cirencester, UK Research Activities Shangguan, H., Liu, J., Zhu, Y., Tong, Z., & Wu, Y. (2015). Start-up of a spiral periphyton bioreactor (SPR) for removal of COD and the characteristics of the associated microbial community. Bioresour Technol, 193, 456-462. doi: 10.1016/j.biortech.2015.06.151 Sharifuddin, HAH. (1993). Nature farming research in Malaysia: effect of organic amendment and EM on crop production. Paper presented at the Proceedings 3rd Intl. Conference on Kyusei Nature Farming, Santa Barbara, California U.S.A. Shintani, M. (2000). Organic fertilizer – Managing banana residues with Effective Microorganisms. Paper presented at the Proceedings of the 13th International Scientific Conference of IFOAM. Alfoeldi T, FiBL, Basel, Switzerland Smet, E., & Van Langenhove, H. (1998). Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry. Biodegradation, 9(3- 4), 273-284. Sousa, J., & Foresti, E. (1996). Domestic sewage treatment in an up-flow anaerobic blanket – sequencing batch reactor system. . Journal Water Science Technology. , 33(11), 73-84. Spoelstra, SF. (1977). Simple phenols and indoles in anaerobically stored piggery wastes. J. Sci. Fd. Agric, 28, 415-423. Steel, RGD., & Torrie, JH. (1980). Principles and procedures of statistics. New York, USA. Sterling, CR. (1987). The detection of Giardia and Cryptosporidium from water sources using monoclonal antibodies. University of Arizona, Tucson. Tawfik, A., Klapwijk, B., Gohary, F., & Lettinga, G. (2002). Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactor. Water Res, 36(8), 147-155. Tawfik, A., Klapwijk, B., Van Buuren, J., Gohary, F., & Lettinga, G. (2004). Physicochemical factors affecting the E. coli removal in a rotating biological contactor (RBC) treating UASB effluent. Water Res, 38(7), 1081-1088. Tawfik, A., Zeeman, G., Klapwijk, B., Sanders, W., Gohary, F., & Lettinga, G. (2003). Treatment of domestic sewage in a combined UASB/RBC system. Process optimization for irrigation purposes. Journal Water Science Technology, 48(7), 131-138. Torres, P., & Foresti, E. (2001). Domestic sewage treatment in a pilot system composed of UASB and SBR reactors. Journal Water Science Technology, 44(6), 247-253. Van Craeynest, K., Dewulf, J., Vandeburie, S., & Van Langenhove, H. (2003). Removal of trichloroethylene from waste gases via the peroxone process. Water Sci Technol, 48(3), 65-72 Vieira, S. (1988). Anaerobic Treatment of Domestic Sewage in Brazil - Research Results and Full-scale Experience. Anaerobic Digestion, 5th International Symposium on Anaerobic Digestion (pp. 185-195). Boloña (Italia). Vieira, S., & Souza, M. (1986). Development of technology for the use of the UASB reactor in domestic sewage treatment. Journal Water Science Technology, 18(17), 221-238. Von-Sperling, M, & Chernicharo, C. . (2005). Biological Wastewater Treatment in Warm Climate Regions. Brasil. Von Sperling, M. (1995). Comparison among the most frequently used systems for wastewater treatment in developing countries. International symposium on technology transfer. Journal Water Science Technology, 33(13), 59-72. von Sperling, M., Freire, VH., & Chernicharo, CAL. . (2001). Performance Evaluation of a UASB–Activated Sludge System Treating Municipal Wastewater. Wat.Sci.Technol, 43(11), 323-328 Wei, M., Bai, Y., Ao, M., Jin, W., Yu, P., Zhu, M., & Yu, L. (2013). Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW). Bioresour Technol, 146, 549- 555. doi: 10.1016/j.biortech.2013.07.090 Zhao, Y., Chen, Y., Zhang, D., & Zhu, X. (2010). Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. Environ Sci Technol, 44(9), 3317-3323. doi: 10.1021/es902958c Zhao, Y., Fang, Y., Jin, Y., Huang, J., Ma, X., He, K., . . . Zhao, H. (2015). Microbial community and removal of nitrogen via the addition of a carrier in a pilot-scale duckweed-based wastewater treatment system. Bioresour Technol, 179, 549- 558. doi: 10.1016/j.biortech.2014.12.037 Zhu, Y., Li, S., Li, D., Liu, C., & Ma, F. (2014). Bioflocculation behaviours of microbial communities in water treatment. Water Sci Technol, 69(4), 694-702. doi: 10.2166/wst.2013.746 Asociacion colombiana de porcicultores (2015). [Estadisticas de produccion y consumo decerdo a nivel nacional]. Bernal, DP., & Cardona, DA. (2003). Selección de tecnología para el tratamiento de aguas residuales domésticas por métodos naturales: una metodología con énfasis en aspectos tecnológicos. (Pregrado Ingeniería sanitaria y ambiental), Universidad del Valle, Cali. Colombia. Castillo, G., Altuna, B., Michelena, G., Sanchez-Bravo, J., & Acosta, M. (2005). Cuantificacion del contenido de acido indol acetico (AIA) en un caldo de fermentacion microbiana. Anales de biologia, 27, 137-142. Castro, A. (2003). Selección de alternativas sostenibles para el tratamiento de aguas residuales municipales en Colombia: un método con énfasis en aspectos 1 2 3 4 5 6 7 8 9 10 11 12 RECOLECCION DE MUESTRAS DE AGUAS RESIDUALES DE GRANJA PORCICOLA X X ANALISIS FISICOQUIMICO Y MICROBIOLOGICO DE LAS MUESTRAS DE AGUAS RESIDUALES X X X MULTIPLICACION Y ALMACENAMIENTO DE LOS MICROORGANISMOS EFICACES A UTILIZAR X X X X PREPARACION DE LAS FORMULACIONES DE MICROORGANISMOS EFICACES X X X X TRATAMIENTO DE LAS AGUAS RESIDUALES CON LA COMBINACION DE MICROORGANISMOSEFICACES DEFINIDOS X X X X X ANALISIS ESTADISTICO DE LOS RESULTADOS X X X ENTREGA DEL INFORME FINAL X MESES ACTIVIDAD tecnológicos. (MSc en Ingeniería Sanitaria y Ambiental), Universidad del Valle, Cali. Colombia. Daly, MJ., & Stewart, DPC. (1999). Influence of Effective Microorganisms (EM) on vegetable production and carbon mineralization, A preliminary investigation. J. Sustain. Agric, 14, 15-25. INSTITUTO COLOMBIANO AGROPECUARIO. (2007). RESOLUCIÓN 2640. Ministerio de Agricultura y Desarrollo Rural, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Ministerio de Comercio, Industria y Turismo, Ministerio de Hacienda y Crédito Público, Ministerio de Protección Social, DNP: Dirección de Desarrollo Rural Sostenible. (2007). POLÍTICA NACIONAL DE SANIDAD E INOCUIDAD PARA LA CADENA PORCICOLA. Bogota, Colombia. Ministerio de ambiente y desarrollo sostenible. (2015). Resolucion 0631. Bogota, Colombia. MINISTERIO DE LA PROTECCION SOCIAL. (2007). DECRETO 1500. Noyola, A. (2003). Seminario Internacional sobre Métodos Naturales para el Tratamiento de Aguas Residuales Agua. Tendencias en el tratamiento de aguas residuales domésticas en Latinoamérica. caeratgene, Colombia. PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA. (2010). Decreto 3930. Presidencia de la Republicade Colombia. (1998). Decreto 475. Sanchez, J. (2003). Evaluacion y monitoreo microbiologico y fisicoquimico de una planta de tratamiento de agua residual por rizofiltracion, en una empresa productora dediscos compactos (Microbiologia Industrial), Pontificia Universidad Javeriana, Bogota, Colombia. Unda, OF. (1999). Ingenieria sanitaria aplicada al saneamiento y salud pública. Mexico: Editorial Limusa S.A. . MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL, ASOCIACION COLOMBIANA DE PORCICULTORES, FONDO NACIONAL DE LA PORCICULTURA, SOCIEDAD DE AGRICULTORES DE COLOMBIA. (2002). Guía Ambiental para el subsector Porcícola. Dirección General Ambiental Sectorial, 29-41 Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 application/pdf Pereira Universidad Libre Seccional Pereira |
score |
12,111491 |