Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada

81 páginas

Detalles Bibliográficos
Autor Principal: Garcés Vega, Francisco Javier
Otros Autores: Klotz Ceberio, Bernadette
Formato: Desconocido (Unknown)
Lenguaje:Español (Spanish)
Publicado: Universidad de La Sabana 2012
Materias:
Acceso en línea:http://hdl.handle.net/10818/3329
id ir-10818-3329
recordtype dspace
institution Universidad de La Sabana
collection DSpace
language Español (Spanish)
topic Almacenamiento de leche-Investigaciones
Almacenamiento en frío
Calidad de los productos
Cadena de frío
Refrigeración de alimentos
Industria y comercio de alimentos-Control de calidad
spellingShingle Almacenamiento de leche-Investigaciones
Almacenamiento en frío
Calidad de los productos
Cadena de frío
Refrigeración de alimentos
Industria y comercio de alimentos-Control de calidad
Garcés Vega, Francisco Javier
Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
description 81 páginas
author2 Klotz Ceberio, Bernadette
author_facet Klotz Ceberio, Bernadette
Garcés Vega, Francisco Javier
format Desconocido (Unknown)
author Garcés Vega, Francisco Javier
author_sort Garcés Vega, Francisco Javier
title Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
title_short Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
title_full Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
title_fullStr Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
title_full_unstemmed Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
title_sort diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada
publisher Universidad de La Sabana
publishDate 2012
url http://hdl.handle.net/10818/3329
_version_ 1679478128738566144
spelling ir-10818-33292020-01-28T21:02:57Z Diseño de un prototipo de integrador de tiempo temperatura para el monitoreo de la calidad de leche refrigerada Garcés Vega, Francisco Javier Klotz Ceberio, Bernadette Almacenamiento de leche-Investigaciones Almacenamiento en frío Calidad de los productos Cadena de frío Refrigeración de alimentos Industria y comercio de alimentos-Control de calidad 81 páginas El presente trabajo propone un prototipo; a nivel de componentes estructurales y modelos de respuesta para el desarrollo de un integrador de tiempo-temperatura (TTI) de base microbiológica. Los modelos obtenidos permitieron relacionar de manera satisfactoria la respuesta del integrador frente al crecimiento de microrganismo presentes en leche pasteurizada comercial. Adicionalmente se desarrollaron los modelos que relacionan el crecimiento del microrganismo indicador con el cambio de pH y con el cambio de color (ΔE) del TTI. La validación de los modelos sobre los datos experimentales y sobre escenarios hipotéticos de abuso de temperatura mostró un desempeño adecuado del dispositivo así como una respuesta anticipada ante la eventual presencia de una concentración crítica de microrganismos patógenos en el producto 2012-08-14T14:09:14Z 2012-08-14T14:09:14Z 2012 2012-08-14 mastherThesis Tesis de maestría publishedVersion Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food.  International Journal of Food Microbiology, 23, 277‐294.  Baranyi, J., & Roberts, T. A. (1995). Mathematics of predictive microbiology. International Journal  of Food Microbiology, 199‐218.  Baranyi, J., & Roberts, T. A. (2004). Predictive Microbiology ‐ Quantitative Microbial Ecology.  Culture.  Barbano, D. M., Ma, Y., & Santos, M. V. (2006). Influence of Raw Milk Quality on Fluid Milk Shelf Life. Journal of Dairy Science Especial Supplement, E15–E19.  Bobelyn, E., Hertog, M. L., & Nicolaï, B. M. (2006). Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest  Biology and Technology, 104‐114.  Buchanan, R. I., & Phillips, J. G. (1990). Response surface model for predicting the effects of  temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere  on the growth of Listeria monocytogenes. Journal of Food Protection(53), 370‐376.  DANE. (2004). Censo Producción de Leche Industrial Resultados 2004. Bogotá D.C.  Departamento Nacional de Planeación. (06 de 2007). Agenda interna para la productividad y la  competitividad. Documento Regional Bogotá‐Cundinamarca. Bogotá.  Duyvesteyna, W. S., Shimonib, E., & Labuza, T. P. (2001). Determination of the End of Shelf‐life for  Milk using Weibull Hazard Method. Lebensmittel‐Wissenschaft und‐Technologie, 143‐148.  Ellouze, M., Pichaud, M., Bonaiti, C., Coroller, L., Couvert, O., Thualut, D., & Vaillant, R. (2008).  Modeling pH evolution and lactic acid production in the growth medium of lactic acid  bacterium: Application to set a biological TTI. International Journal of Food Microbiology,  101‐107.  FEDEGAN. (20 de 05 de 2010). Producción Nacional de Leche. Bogotá D.C., Colombia.  Fortin, C., & Goodwin, H. J. (2008). Valuation of Temp‐Time’s Fresh‐Check® Indicator on Perishable  Food Products in Belgium. Southern Agricultural Economics Association Annual Meeting,  (págs. 1‐20). Dallas, Texas.  Fromm, H. I., & Boor, K. J. (2004). Characterization of Pasteurized Fluid Milk Shelf‐life Attributes.  Journal of Food Science, M207‐M214 Fu, B., & Labuza, T. P. (1992). Considerations for the application of Time‐Temperature integrators  in food distribution. Journal of Food Distribution Research, 9‐18.  Fu, B., Taoukis, P. S., & Labuza, T. P. (1991). Predictive microbiology for monitoring spoilage of  dairy products with Time‐Temperature integrators. Journal of Food Science, 1209‐1215.  Fu, B., Taoukis, P. S., & Labuza, T. P. (1991). Predictive microbiology for monitoring spoilage of  dairy products with Time‐Temperature integrators. Journal of Food Science, 1209‐1215.  Fu, B., Taoukis, P. S., & Labuza, T. P. (1992). Theoretical design of a variable activation energy  Time‐Temperature integrator for prediction of food or drug shelf life. Drug Development  ans Industrial Phramacy, 18(8), 829‐850.  Galagan, Y., & Su, W. F. (2008). Fadable ink for time–temperature control of food freshness: Novel  new time–temperature indicator. Food Research International, 41, 653–657.  Garrido, V., García‐Jalón, I., & Vitas, A. I. (2010). Temperature distribution in Spanish domestic  refrigerators and its effect on Listeria monocytogenes growth in sliced ready‐to‐eat ham.  Food Control(21), 896‐891.  Geeraerd, A. H., Herremans , C., & Van Impe, J. (2000). Structural model requirements to describe  microbial inactivation during a mild heat treatment. International Journal of Food  Microbiology, 59(3), 185‐209.  Goff, D. (07 de 11 de 2011). Dairy Science and Technology. Obtenido de Education Series:  http://www.foodsci.uoguelph.ca/dairyedu/home.html  Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food  losses and food waste. Roma: Food and agriculture organization of the United Nations.  Hamm, D. L., Hammond, E. G., & Hotchkiss, y. D. (1968). Effect of Temperature on Rate of  Autoxidation of Milk Fat. Journal of Dairy Science.  Koseki, S. (2009). Microbial Responses Viewer (MRV): A new ComBase.derived database of  microbial responses to food environments. International Journal of Food Microbiology, 31,  75‐82.  Koutsoumanis, K., Giannakourou, M. C., Taoukis, P. S., & Nychas, G. E. (2002). Application of shelf  life decision system (SLDS) to merine cultured fish quality. International Journal od Food  Microbiology, 375‐382.  Koutsoumanis, K., Giannakourou, M. C., Taoukis, P. S., & Nychas, G. E. (2002). Application of shelf  life decision system (SLDS) to merine cultured fish quality. International Journal od Food  Microbiology, 375‐382.  Koutsoumanis, K., Taoukis, P., & Nychas, G. (2005). Development of a Safety Monitoring and  Assurance System for chilled food products. International Journal of Food Microbiology,  253‐206.  Kreyenschmidt, J., Christiansen, H., Hübner, A., Raab, V., & Petersen, B. (2010). A novel  photochromic time–temperature indicator to support cold chain management.  International Journal of Food Science and Tehcnology, 208‐215.  Lasso, R. A. (2010). Selección de los componentes estructurales de un integrador de tiempo y  temperatura (TTI) para monitoreo de la calidad microbiológica de la leche cruda y  pasterizada. Proyecto de grado de maestria, Bogotá D.C. Maschietti, M. (2010). Time‐Temperature Indicators for Perishable Products. Recent Patents on Engineering, 4, 129‐144. McMeekin, T. A., Brown, J., Krist, K., Miles, D., Neumeyer, K., Nichols, D. S., . . . Soontranon, S. (1997). Quantitative microbiology: a basis for food safety. Emerging Infectious Diseases, 3(4), 541‐549. Ministerio de Agricultura y Desarrollo Rural (MADR). (2010). Boletín de Análisis por Producto: Leche. Bogota D.C.: Dirección de Política Sectorial ‐ Grupo Análisis Sectorial. Ministerio de Agricultura y Desarrollo Rural Observatorio Agrocadenas Colombia. (2005). La agroindustria de lacteos y derivas en Colombia. Documento de Trabajo, Bogota D.C. Ministerio de la Protección Social. (28 de 02 de 2006). Decreto 616 de 2006. Por el cual se expide el Reglamento Técnico sobre los requisitos que debe cumplir la leche para el consumo humano que se obtenga, procese, envase, transporte, comercialice, expenda, importe o exporte en el país. Bogotá Oliver, S. P., Boor, K. J., Murphy, S. C., & Murinda, S. E. (2009). Food Safety Hazards Associated with Consumption of Raw Milk. Foodborne Pathogens and Disease, 793‐806. Olley, J. (1978). Current status of the theory of the application of temperature indicators, temperature integrators, and temperature function integrators to the food spoilage chain. International Journal of Refrigeration, 81‐86. Peleg, M. (2006 ). Advanced quantitative microbiology for foods and biosystems. Boca Raton: CRC Press Taylor & Francis Group. Pinon, A., Zwietering, M., Perrie, L., Membre, J.‐M., Leporq, B., Mettler, E., . . . Vialette, M. (2004). Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products. Applien and Environmental Microbiology, 1081‐1087. Poschet, F., Geeraerd, A. H., Scheerlinck, N., Nicolaï, B. M., & Van Impe, J. F. (2003). Monte Carlo analysis as a tool to incoporate variation on experimental data in predictive microbiology. Food microbiology, 285‐295. Ravuyan, P., Tang, J., Orellana, L., & Rasco, B. (2003). Physicochemical Properties of a Time‐ Temperature Indicator Based on Immobilization of Aspergillus oryzae α‐Amylase in Polyacrylamide Gel as Affected by Degree of Cross‐linking Agent and Salt Content. Journal of Food Science, 2302‐2308. Ray, B. (2005). Contol by Heat. En B. Ray, Fundamental Food Microbiology (págs. 455‐466). Boca Raton, Florida, USA: Taylor & Francis. Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology(81), 501‐508. Rosso, I. (1995). Tesis doctoral, Université Claude Bernard, Lyon, France. Rosso, J., Lobry, J. R., Bajard, S., & Flandrois, J. P. (1995). Convenient model to describe the combined effects of temperature and pH on microbial growth. Applied and Environmental Microbiology, 610‐616. Salter, M., Ross, T., & McMeekin, T. (1998). Applicability of model for non‐pathogenic Escherichia coli for predicting the growth of pathogenic Escherichia coli. Journal of Applied Microbiology, 357‐364. Shellhammer, T., & Singh, R. (1991). Monitoring Chemical and Microbial Changes of Cottage Cheese using a Full‐history Time‐temperature Indicator. Journal of Food Science, 402‐405 Sherlock, M., & Labuza, T. P. (1992). Consumer Perceptions of Consumer Time‐Temperature indicators for Use on Refrigerated Dairy Foods. Journal of Dairy Science, 3167‐3176. Skandamis, P. N., & Nychas, G.‐J. E. (2000). Development and Evaluation of a Model Predicting the Survival of Escherichia coli O157:H7 NCTC 12900 in Homemade Eggplant Salad at Various Temperatures, pHs, and Oregano Essential Oil Concentrations. Applien and Environmental Microbiology, 1646–1653. Taoukis, P. S., & Giannakourou, M. C. (2004). Temperature and food stability: analysis and control. En R. Steele, Understanding and measuring the shelf‐life of food (págs. 42‐68). Boca Raton: Woodhead Publishing Limited and CRC Press LLC. Taoukis, P., & Labuza, T. (1989). Applicability of Time‐Temperature Indicators as Shelf Life Monitors of Food Products. Journal of Food Science, 783‐788. U.S. Food and Drug Administration. (2009). Bad Bug Book. Recuperado el 20 de 07 de 2011, de Bacilus cereus ans other Bacillus spp.: http://www.fda.gov/food/foodsafety/foodborneillness/foodborneillnessfoodbornepathog ensnaturaltoxins/badbugbook/ucm070492.htm Vaikousi, H., Biliaderis, C. G., & Koutsoumanis, K. P. (2008). Development o a microbial Time/Temperature indicator prototype for monitoring the microbiological quality of chilled foods. Applied and Environmental Microbiology, 3242‐3250. van Gerwen, S. J., & Zwietering, M. H. (1998). Growth and inactivation models to be used in quantitative risk assessments. Journal of Food Protection, 61(11), 1541‐1549. Walstra, P. (1999). Microbilogy of Milk. En P. Walstra, Dairy Technology: Principles of Milk Properties ans Processes (págs. 174‐188). New York, NY, USA: Marcel Dekker Incorporated Wanihsuksombat, C., Hongtrakul, V., & Suppakul, P. (2010). Development and characterization of lactic acid‐based time‐temperature indicator for monitoring food product quality. Journal of Food Engineering, Doi:10.1016/j.jfoodeng.2010.04.027 WHO Media centre. (Marzo de 2007). Food safety and foodborne illness. Recuperado el 01 de 05 de 2010, de World Health Organization: http://www.who.int/mediacentre/factsheets/fs237/en/print.html Zwietering, M. H., & den Besten, H. M. (2010). Modelling: one word for many activities and uses. Food Microbiology, doi: 10.1016/j.fm.2010.04.015 Zwietering, M. H., de Wit, J. C., & Notermans, S. (1996). Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption. International Journal of Food Microbiology, 30, 55‐70. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van ´T Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and Envirnmental Microbiology, 1875‐1881. http://hdl.handle.net/10818/3329 152793 TE05471 spa openAccess Universidad de La Sabana Maestría en Diseño y Gestión de Procesos Facultad de Ingeniería Universidad de La Sabana Intellectum Repositorio Universidad de La Sabana
score 11,388314