A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse

This paper presents a visual tool to facilite the trajectory analysis and the discovery of spatio-temporal patterns in a trajectory data warehouse (TDW). The proposed tool is a spatio-temporal magnifying glass that allows analysts to focus on a specific region, where several trajectories have ocurre...

Descripción completa

Detalles Bibliográficos
Autores Principales: Moreno, Francisco Javier, Bota Sierra, Sergio, Cadavid Agudelo, Andrés Felipe
Formato: Artículo (Article)
Lenguaje:Español (Spanish)
Publicado: Universidad Militar Nueva Granada 2014
Materias:
Acceso en línea:http://hdl.handle.net/10654/33166
id ir-10654-33166
recordtype dspace
institution Universidad Militar Nueva Granada
collection DSpace
language Español (Spanish)
topic Trajectories
trajectory analysis
episodes
stop episodes
proximity episodes
data warehouses
visualization
spatio-temporal.
Trayectorias
análisis de trayectorias
episodios
episodios de estadía
episodios de cercanía
bodegas de datos
visualización
espacio-temporal.
spellingShingle Trajectories
trajectory analysis
episodes
stop episodes
proximity episodes
data warehouses
visualization
spatio-temporal.
Trayectorias
análisis de trayectorias
episodios
episodios de estadía
episodios de cercanía
bodegas de datos
visualización
espacio-temporal.
Moreno, Francisco Javier
Bota Sierra, Sergio
Cadavid Agudelo, Andrés Felipe
A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse
description This paper presents a visual tool to facilite the trajectory analysis and the discovery of spatio-temporal patterns in a trajectory data warehouse (TDW). The proposed tool is a spatio-temporal magnifying glass that allows analysts to focus on a specific region, where several trajectories have ocurred and to delect, according to some parameters spsecified by the analyst through a graphical interface, e.g.the closeness relationship between trajectories of between a trajectory and its surrounding sites. In this paper, we propose and formally define derived closeness was the enrichment of a TDW model in order to allow the formulation of more expressive queries and to support the visualization aspect of the proposed tool. Although experiments that are more exhaustive are required, our results evidence some spatio-temporal patterns that demonstrate the convenience and advantages of our tool.
format Artículo (Article)
author Moreno, Francisco Javier
Bota Sierra, Sergio
Cadavid Agudelo, Andrés Felipe
author_facet Moreno, Francisco Javier
Bota Sierra, Sergio
Cadavid Agudelo, Andrés Felipe
author_sort Moreno, Francisco Javier
title A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse
title_short A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse
title_full A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse
title_fullStr A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse
title_full_unstemmed A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse
title_sort spatio-temporal magnifying glass: a tool for the visual analysis of trajectories in a datawarehouse
publisher Universidad Militar Nueva Granada
publishDate 2014
url http://hdl.handle.net/10654/33166
_version_ 1712101967545761792
spelling ir-10654-331662020-01-08T19:06:43Z A spatio-temporal magnifying glass: A tool for the visual analysis of trajectories in a datawarehouse Lupa espacio-temporal: Una herramienta para el análisis visual de trayectorias en una bodega de datos Moreno, Francisco Javier Bota Sierra, Sergio Cadavid Agudelo, Andrés Felipe Trajectories trajectory analysis episodes stop episodes proximity episodes data warehouses visualization spatio-temporal. Trayectorias análisis de trayectorias episodios episodios de estadía episodios de cercanía bodegas de datos visualización espacio-temporal. This paper presents a visual tool to facilite the trajectory analysis and the discovery of spatio-temporal patterns in a trajectory data warehouse (TDW). The proposed tool is a spatio-temporal magnifying glass that allows analysts to focus on a specific region, where several trajectories have ocurred and to delect, according to some parameters spsecified by the analyst through a graphical interface, e.g.the closeness relationship between trajectories of between a trajectory and its surrounding sites. In this paper, we propose and formally define derived closeness was the enrichment of a TDW model in order to allow the formulation of more expressive queries and to support the visualization aspect of the proposed tool. Although experiments that are more exhaustive are required, our results evidence some spatio-temporal patterns that demonstrate the convenience and advantages of our tool. En este artículo se presenta una herramienta visual para facilitar el análisis de trayectorias y el descubrimiento de patrones espacio-temporales a partir de una bodega de datos de trayectorias (BDT). La herramienta propuesta, una lupa espacio-temporal, permite que el analista se enfoque en una determinada región donde han ocurrido varias trayectorias y permite detectar, según ciertos parámetros especificados por el analista a través de una interfaz gráfica, p. ej. la relación de cercanía de una trayectoria con otras o con los sitios a su alrededor. En el artículo se proponen y definen formalmente las relaciones de cercanía derivadas entre trayectorias y entre trayectorias y sitios. Una contribución adicional fue el enriquecimiento de un modelo de una BDT con el fin de permitir la formulación de consultas más expresivas y apoyar el aspecto de visualización de la herramienta propuesta. Aunque se requieren experimentos más exhaustivos, los resultados evidenciaron algunos patrones espacio-temporales que demuestran la conveniencia y la utilidad de la herramienta. 2014-12-01 2020-01-08T19:06:43Z 2020-01-08T19:06:43Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://revistas.unimilitar.edu.co/index.php/rcin/article/view/1038 10.18359/rcin.1038 http://hdl.handle.net/10654/33166 spa https://revistas.unimilitar.edu.co/index.php/rcin/article/view/1038/768 https://revistas.unimilitar.edu.co/index.php/rcin/article/view/1038/1807 /*ref*/Kimball, R., Ross, M., Thornthwaite, W., Mundy, J. & Becker, B. (2008). The data warehouse lifecycle toolkit. Nueva York: Wiley, p.672. /*ref*/Saylor, M. (2013). The mobile wave: how mobile intelligence will change everything. Nueva York, EE.UU.: Vanguard Press, p.304. /*ref*/Bolstad, P. (2012). GIS fundamentals: A first text on geographic information systems. San Francisco, EE.UU.: Eider Press, p.674. /*ref*/Spaccapietra, S., Parent, C., Damiani, M. L., Fernandes de Macêdo, J.A., Porto, F. & Vangenot, C. (2008). A conceptual view on trajectories. Data & Knowledge Engineering, 65(1), pp.126-146. http://dx.doi.org/10.1016/j.datak.2007.10.008 /*ref*/Hägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science Association, 24(1), pp.6-21. http://dx.doi.org/10.1007/BF01936872 /*ref*/Orlando, S., Orsini, R., Raffaetà, A. & Roncato, A. (2007). Trajectory data warehouses. Journal of Computing Science and Engineering, 1(2). pp.211-232. http://dx.doi.org/10.5626/JCSE.2007.1.2.211 /*ref*/Deng, K., Xie, K., Zheng, K. & Zhou, X. (2011). Trajectory indexing and retrieval. En Computing with spatial trajectories (pp.35-60). Boston, MA, EE.UU.: Springer. http://dx.doi.org/10.1007/978-1-4614-1629-6_2 /*ref*/Bogorny, V., Heuser, C.A. & Alvares, L.O. (2010). A conceptual data model for trajectory data mining. Lecture Notes in Computer Science, 6292, pp.1-15. http://dx.doi.org/10.1007/978-3-642-15300-6_1 /*ref*/Braz, F., Orlando, S., Orsini, R., Raffaetà, A., Roncato, A. & Silvestri, C. (2006). Towards a trajectory data warehouse (CS-2006-4). Mestre, Italia: Università di Venezia Ca' Foscari, Dip. Informatica. /*ref*/Baltzer, O., Dehne, F., Hambrusch, S. & Rau-Chaplin, A. (2008). OLAP for trajectories. 19th International Conference on Database and Expert Systems Application. Turín, Italia. http://dx.doi.org/10.1007/978-3-540-85654-2_32 /*ref*/Orlando, S., Orsini, R., Raffaetà, A., Roncato, A. & Silvestri, C. (2007). Spatio-temporal aggregations in trajectory data warehouses. En Data warehousing and knowledge discovery (pp. 66-77). Berlin, Alemania: Springer. http://dx.doi.org/10.1007/978-3-540-74553-2_7 /*ref*/Cuzzocrea, A. & Mansmann, S. (2009). OLAP visualization: models, issues, and techniques. En Encyclopedia of data warehousing and mining (pp. 1439-1446). Hershey, EE.UU.: IGI Publishing. http://dx.doi.org/10.4018/978-1-60566-010-3.ch222 /*ref*/Jeung, H., Lung Yiu, M. & Jensen, C.S. (2011). Trajectory pattern mining. En Computing with spatial trajectories (pp. 143-177). Berlín, Alemania: Springer. http://dx.doi.org/10.1007/978-1-4614-1629-6_5 /*ref*/New York City Department of Transportation. (2012). New York City screenline traffic flow 2011. Nueva York, EE.UU. /*ref*/Department for Transport. (2012). Annual road traffic estimates 2011. Londres, Inglaterra. /*ref*/Jiang, B., Li, Z. (2005). Geovisualization: design, enhanced visual tools and applications. The Cartographic Journal, 42(1), pp.3-4. http://dx.doi.org/10.1179/000870405X52702 /*ref*/Campora, S., Fernández de Macedo, J.A. & Spinsanti, L. (2011). St-Toolkit: a framework for trajectory data warehousing. 14th AGILE Conference on Geographic Information Science. Utrecht, Holanda. /*ref*/Malinowski, E., Zimányi, E. (2008). Advanced data warehouse design: from conventional to spatial and temporal applications. Berlín, Alemania:. Springer, p.444. /*ref*/Carver, R.P. (1976). The case against statistical significance testing. Harvard Educational Review, 48(3), pp.378-399. http://dx.doi.org/10.17763/haer.48.3.t490261645281841 /*ref*/Leonardi, L., Marketos, G., Frentzos, E., Giatrakos, N., Orlando, S., Pelekis, N., … Theodoridis, Y. (2010). T-Warehouse: visual OLAP analysis on trajectory data. IEEE 26th International Conference on Data Engineering. Long Beach, CA, EE.UU. http://dx.doi.org/10.1109/icde.2010.5447749 /*ref*/Leonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G. & Andrienko, N. (2013). A general framework for trajectory data warehousing and visual OLAP. GeoInformatica, 18(2), pp.273-312. http://dx.doi.org/10.1007/s10707-013-0181-3 /*ref*/Demŝar, U. & Virrantaus, K. (2010). Space-time density of trajectories: exploring spatio-temporal patterns in movement data. International Journal of Geographical Information, 10(10), pp.1527-1542. http://dx.doi.org/10.1080/13658816.2010.511223 /*ref*/Bakshev, S., Spisanti, L., Fernández de Macedo, J.A., Vidal, V. & Casanova, M. (2011). Semantic visualization of trajectories. 13th International Conference on Enterprise Information Systems. Beijing, China. /*ref*/Biadgilgn, D., Blok, C. & Huisman, O. (2011). Assessing the cartographic visualization of moving objects. Momona Ethiopian Journal of Science, 3(22), pp.5-12. http://dx.doi.org/10.4314/mejs.v3i1.63687 /*ref*/Sack, J., Speckmann, B., Van Loo, E. & Weibel, R. (2011). Representation, analysis and visualization of moving objects. 2nd Seminar on Representation, Analysis and Visualization of Moving Objects. Dagstuhl, Alemania. /*ref*/Noyon, V., Claramunt, C. & Devogele, T. (2007). A relative representation of trajectories in geogaphical spaces. GeoInformatica, 11(4), pp.479-496. http://dx.doi.org/10.1007/s10707-007-0023-2 /*ref*/Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., ... Yan, Z. (2013). Semantic trajectories modeling and analysis. ACM Computing Surveys, 45(4), pp. 39-75. http://dx.doi.org/10.1145/2501654.2501656 /*ref*/Eick, S.G. (2000). Visualizing multi-dimensional data. ACM SIGGRAPH Computer Graphics, 34(1), pp.61-67. http://dx.doi.org/10.1145/563788.604454 /*ref*/Shekhar, S., Lu, C.T., Tan, X. & Chawla, S. (2001). Map cube: a visualization tool for spatial data warehouses. En Geographic data mining and knowledge discovery (pp.73-108). Nueva York, EE.UU.: Taylor and Francis. http://dx.doi.org/10.4324/9780203468029_chapter_4 /*ref*/Agarwal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakrishnan, R. & Sarawagi, S. (1996). On the computation of multidimensional aggregates. International Conference on Very Large Databases. Mumbai, India. /*ref*/Moreno, F., Arango, F. & Fileto, R. (2009). Extending the map cube operator with multiple spatial aggregate functions and map overlay. 17th International Conference on Geoinformatics. Fairfax, Virginia, EE.UU. http://dx.doi.org/10.1109/geoinformatics.2009.5293401 /*ref*/Moreno, F., Alzate, J.C. & Hernández, J. (2014). Extracting trajectories with the map cube operator. Applied Mathematics & Information Sciences, 8(5), pp.2149-2160. http://dx.doi.org/10.12785/amis/080508 /*ref*/Stolte, C., Tang, D. & Harahan, P. (2002). Query, analysis, and visualization of hierarchically structured data using Polaris. 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canadá. http://dx.doi.org/10.1145/775047.775064 /*ref*/Scotch, M. & Parmanto, B. (2005). SOVAT: Spatial OLAP visualization and analysis tool. 38th Hawaii International Conference on System Sciences, Hawaii, EE.UU. http://dx.doi.org/10.1109/HICSS.2005.550 /*ref*/Techapichetvanich, K., Datta, A. (2005). Interactive visualization for OLAP. Lectures Notes on Computer Science, 3482, pp.206-214. http://dx.doi.org/10.1007/11424857_23 /*ref*/Liu, C., Jou, E. & Lee, C. (2010). Analysis and prediction of trajectories using bayesian network. 6th International Conference on Natural Computation. Yantai, Shandong, China. http://dx.doi.org/10.1109/icnc.2010.5583027 /*ref*/Dore, A. & Regazzoni, C. (2010). Interaction analysis with a bayesian trajectory model. In Derechos de autor 2016 Ciencia e Ingeniería Neogranadina https://creativecommons.org/licenses/by-nc-nd/4.0 application/pdf text/html Universidad Militar Nueva Granada Ciencia e Ingenieria Neogranadina; Vol 24 No 2 (2014); 77-96 Ciencia e Ingeniería Neogranadina; Vol. 24 Núm. 2 (2014); 77-96 Ciencia e Ingeniería Neogranadina; v. 24 n. 2 (2014); 77-96 1909-7735 0124-8170
score 12,111491