Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”

La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como...

Descripción completa

Detalles Bibliográficos
Autor Principal: Estrada Serrato, Carlos
Otros Autores: Restrepo, Carlos M.
Formato: Tesis de maestría (Master Thesis)
Lenguaje:Español (Spanish)
Publicado: Universidad del Rosario 2014
Materias:
Acceso en línea:http://repository.urosario.edu.co/handle/10336/8796
id ir-10336-8796
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Español (Spanish)
topic Butirilcolinesterasa humana (BChE)
Cocaína
Gen BCHE
Polimorfismos de Nucleótido Simple (SNPs)
Reacciones adversas
Ciencias médicas, Medicina
Human Butyrylcholinesterase (BChE)
BCHE gene
Cocaine
Single Nucleotide Polymorphisms (SNPs)
Adverse reactions
Butirilcolinesterasa humana (BChE)
Gen BCHE
Polimorfismos de Nucleótido Simple (SNPs
Genética
spellingShingle Butirilcolinesterasa humana (BChE)
Cocaína
Gen BCHE
Polimorfismos de Nucleótido Simple (SNPs)
Reacciones adversas
Ciencias médicas, Medicina
Human Butyrylcholinesterase (BChE)
BCHE gene
Cocaine
Single Nucleotide Polymorphisms (SNPs)
Adverse reactions
Butirilcolinesterasa humana (BChE)
Gen BCHE
Polimorfismos de Nucleótido Simple (SNPs
Genética
Estrada Serrato, Carlos
Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
description La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como la metilprednisolona, el mivacurium y la succinilcolina y drogas de uso y/o abuso como la heroína y la cocaína. Es codificada por el gen BCHE (OMIM 177400), habiéndose identificado más de 100 variantes, algunas no estudiadas plenamente, además de la forma más frecuente, llamada usual o silvestre. Diferentes polimorfismos del gen BCHE se han relacionado con la síntesis de enzimas con niveles variados de actividad catalítica. Las bases moleculares de algunas de esas variantes genéticas han sido reportadas, entre las que se encuentra las variantes Atípica (A), fluoruro-resistente del tipo 1 y 2 (F-1 y F-2), silente (S), Kalow (K), James (J) y Hammersmith (H). En este estudio, en un grupo de pacientes se aplicó el instrumento validado Lifetime Severity Index for Cocaine Use Disorder (LSI-C) para evaluar la gravedad del consumo de “cocaína” a lo largo de la vida. Además, se determinaron Polimorfismos de Nucleótido Simple (SNPs) en el gen BCHE conocidos como responsables de reacciones adversas en pacientes consumidores de “cocaína” mediante secuenciación del gen y se predijo el efecto delos SNPs sobre la función y la estructura de la proteína, mediante el uso de herramientas bio-informáticas. El instrumento LSI-C ofreció resultados en cuatro dimensiones: consumo a lo largo de la vida, consumo reciente, dependencia psicológica e intento de abandono del consumo. Los estudios de análisis molecular permitieron observar dos SNPs codificantes (cSNPs) no sinónimos en el 27.3% de la muestra, c.293A>G (p.Asp98Gly) y c.1699G>A (p.Ala567Thr), localizados en los exones 2 y 4, que corresponden, desde el punto de vista funcional, a la variante Atípica (A) [dbSNP: rs1799807] y a la variante Kalow (K) [dbSNP: rs1803274] de la enzima BChE, respectivamente. Los estudios de predicción In silico establecieron para el SNP p.Asp98Gly un carácter patogénico, mientras que para el SNP p.Ala567Thr, mostraron un comportamiento neutro. El análisis de los resultados permite proponer la existencia de una relación entre polimorfismos o variantes genéticas responsables de una baja actividad catalítica y/o baja concentración plasmática de la enzima BChE y algunas de las reacciones adversas ocurridas en pacientes consumidores de cocaína.
author2 Restrepo, Carlos M.
author_facet Restrepo, Carlos M.
Estrada Serrato, Carlos
format Tesis de maestría (Master Thesis)
author Estrada Serrato, Carlos
author_sort Estrada Serrato, Carlos
title Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
title_short Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
title_full Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
title_fullStr Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
title_full_unstemmed Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
title_sort polimorfismos del gen butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína”
publisher Universidad del Rosario
publishDate 2014
url http://repository.urosario.edu.co/handle/10336/8796
_version_ 1645140917635514368
spelling ir-10336-87962019-09-19T12:37:54Z Polimorfismos del gen Butirilcolinesterasa responsables de reacciones adversas en pacientes consumidores de “cocaína” Estrada Serrato, Carlos Restrepo, Carlos M. Butirilcolinesterasa humana (BChE) Cocaína Gen BCHE Polimorfismos de Nucleótido Simple (SNPs) Reacciones adversas Ciencias médicas, Medicina Human Butyrylcholinesterase (BChE) BCHE gene Cocaine Single Nucleotide Polymorphisms (SNPs) Adverse reactions Butirilcolinesterasa humana (BChE) Gen BCHE Polimorfismos de Nucleótido Simple (SNPs Genética La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como la metilprednisolona, el mivacurium y la succinilcolina y drogas de uso y/o abuso como la heroína y la cocaína. Es codificada por el gen BCHE (OMIM 177400), habiéndose identificado más de 100 variantes, algunas no estudiadas plenamente, además de la forma más frecuente, llamada usual o silvestre. Diferentes polimorfismos del gen BCHE se han relacionado con la síntesis de enzimas con niveles variados de actividad catalítica. Las bases moleculares de algunas de esas variantes genéticas han sido reportadas, entre las que se encuentra las variantes Atípica (A), fluoruro-resistente del tipo 1 y 2 (F-1 y F-2), silente (S), Kalow (K), James (J) y Hammersmith (H). En este estudio, en un grupo de pacientes se aplicó el instrumento validado Lifetime Severity Index for Cocaine Use Disorder (LSI-C) para evaluar la gravedad del consumo de “cocaína” a lo largo de la vida. Además, se determinaron Polimorfismos de Nucleótido Simple (SNPs) en el gen BCHE conocidos como responsables de reacciones adversas en pacientes consumidores de “cocaína” mediante secuenciación del gen y se predijo el efecto delos SNPs sobre la función y la estructura de la proteína, mediante el uso de herramientas bio-informáticas. El instrumento LSI-C ofreció resultados en cuatro dimensiones: consumo a lo largo de la vida, consumo reciente, dependencia psicológica e intento de abandono del consumo. Los estudios de análisis molecular permitieron observar dos SNPs codificantes (cSNPs) no sinónimos en el 27.3% de la muestra, c.293A>G (p.Asp98Gly) y c.1699G>A (p.Ala567Thr), localizados en los exones 2 y 4, que corresponden, desde el punto de vista funcional, a la variante Atípica (A) [dbSNP: rs1799807] y a la variante Kalow (K) [dbSNP: rs1803274] de la enzima BChE, respectivamente. Los estudios de predicción In silico establecieron para el SNP p.Asp98Gly un carácter patogénico, mientras que para el SNP p.Ala567Thr, mostraron un comportamiento neutro. El análisis de los resultados permite proponer la existencia de una relación entre polimorfismos o variantes genéticas responsables de una baja actividad catalítica y/o baja concentración plasmática de la enzima BChE y algunas de las reacciones adversas ocurridas en pacientes consumidores de cocaína. Human Butyrylcholinesterase (BChE; EC 3.1.1.8) is a polymorphic enzyme synthesized in the liver and adipose tissue, widely distributed in the body and responsible for hydrolyze some choline esters such as procaine, aliphatic esters such as aspirin, drugs as methylprednisolone, mivacurium and succinylcholine and drug to use and abuse such as heroin and cocaine. It is coded by the BCHE gene (OMIM 147400), more than 100 variants have been identified, however not all of them have been studied fully, besides the most common form: usual or wild type. BCHE polymorphisms have been shown to produce enzymes with varying levels of catalytic activity. The molecular bases of some genetic variants of BCHE have been reported, such as the Atypical (A), fluoride-resistant 1 and 2 (F-1 and F2), silent (S), Kalow (K), James (J) and Hammersmith (H) variants. In this study, validated instrument Lifetime Severity Index for Cocaine Use Disorder (LSI-C) was applied to evaluate the severity of the consumption of "cocaine" throughout life. In addition, Single Nucleotide Polymorphisms (SNPs) were identified in the BCHE gene, responsible for adverse reactions in patients consumers of "cocaine" by gene sequencing and the effect of these SNPs on the function and structure of the protein was predicted, using bio-informatics tools. The LSI-C instrument provided results in four dimensions: consumption throughout life, recent use, psychological dependence and quit attempt of cocaine use. Molecular analysis studies allowed to observe two coding SNPs (cSNPs) in 27.3% of the sample, c.293A>G (p.Asp98Gly) and c.1699G>A (p.Ala567Thr), located in exons 2 and 4, which are, from the functional point of view, to the atypical variant (A) [dbSNP: rs1799807] and Kalow variant (K) [dbSNP: rs1803274] of BChE enzyme, respectively. In silico prediction established for SNPs p.Asp98Gly a pathogenic character, while for the SNPs p.Ala567Thr showed neutral behavior. The analysis of the results allows proposing the existence of a relationship between polymorphisms or genetic variants responsible for the low catalytic activity and/or low plasma concentration of BChE enzyme and some of the adverse reactions in cocaine consumer patients. 2014-06-17 2014-08-12T14:01:31Z info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://repository.urosario.edu.co/handle/10336/8796 spa info:eu-repo/semantics/openAccess application/pdf Universidad del Rosario Maestría en Ciencias con Énfasis en Genética Humana Facultad de medicina reponame:Repositorio Institucional EdocUR instname:Universidad del Rosario Alcântara V, Cipriani T, Rea R, Suplicy H, Chautard-Freire-Maia E. Formas moleculares dá butirilcolinesterase (BChE) e índice de massa corporal (IMC). Genet. Mol. Biol. 1999; 22: 213. Suplemento. Alcântara V. Fenótipo dá butirilcolinesterase e suas relações com dados antropométricos, bioquímico-hormonais e pressão arterial em obesos e na população geral de Curitiba, PR. Curitiba, 2000; 230f. Tese (Doutorado em Genética) – Setor de Ciências Biológicas, Universidade Federal do Paraná. Amoedo M, Craver L, Marco M, Fernández E. Cocaine-induced acute renal failure without rahbdomyolisis. Nephrol. Dial. Transplant. 1999; 14:2970-1 Ando M, Hirosaki S, Tamura K, Taya T. Multiple regression analysis of the cholinesterase activity with certain physiochemical factors. Environ. Res. 1984; 33 (1): 96-105. Ángel G. Interpretación Clínica de Laboratorio. 5ta Edición. Bogotá: editorial médica panamericana, 1996. Arpagaus M, Kott M, Vatsis K, Bartels C, La Du B; Lockridge O. Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry. 1990; 29: 124-131. Barta C, Sasvari-Szekely M, Devai A, Kovacs E, Staub M, Enyedi P. Analysis of mutations in the plasma cholinesterase gene of patients with a history of prolonged neuromuscular block during anesthesia. Mol. Genet. Metab. 2001; 74: 484-8. Bartels C, Van Der Spek A, La Du B.Two polymorphismsin the noncoding regions of the BCHE gene. Nucleic. Acids.Res. 1990; 18: 61-71. Bartels C, James K, La Du B. DNA mutations associated with the human butyrylcholinesterase J-variant. Am. J. Hum. Genet. 1992; 50: 1104-1114. Bartels C, Jensen F, Lockridge O, Van Der Spek A, Rubinstein H, Lubrano T, La Du B. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutationand other polymorphic sites. Am. J. Hum. Genet. 1992b; 50: 1086-1103. Bergmann F, Wurzel M. The structure of the active surface of serum cholinesterase. Biochim. Biophys. Acta. 1954;13(2):251–9. Bergeman C, Plomin R, Pedersen N, McClearn G, Nesselroade J. Genetic and environmental influenceson social support: The Swedish Adoption Twin Study of Aging (SATSA). J. Gerontol. 1990; 45: 101-106. Berke J, Hyman S. Addiction, dopamine and the molecular mechanisms of memory. Neuron.2000; 25: 515-32. Boeck A, Fry D, Sastre A, Lockridge O. Naturallyoccurring mutation, Asp70His, in human butyrylcholinesterase. Ann. Clin. Biochem. 2002; 39:154–156. Bourne J, Collier H, Somers G.Succinylcholine (succinylcholine); Muscle relaxant of shortaction.Lancet1. 1952; 1225-1229. Brass N, Racz A, Heckel D, Remberger K, Sybrecht G, Meese E. Amplification of the genes BCHE and SLC2A2 in 40% of squamous cell carcinoma of the lung. Cancer Research. 1997; 57: 2290-2294. Brody T, Kenneth M, Larner J. Human Pharmacology, molecular to clinical.Thirdedition.St Louis, Missouri E.U.: Mosby-year Book, inc., 1998. 101-140. Bryson K, McGuffin L, Marsden R, Ward J, Sodhi J, Jones D. Protein structure prediction servers at University College London. Nucl. Acids2005; Res. 33 (Web Server issue):W36-38. 2005. Caballero L, Alarcón A. Cocaína y cocainomanía en atención primaria. Drogas y drogodependencia en atención primaria. Volumen II. Madrid: Fundación Ciencias de la Salud, 2000. 205-244. Camí J, Farré M. Drug addiction, mechanisms of disease. N. Engl. J. Med. 2003;349:975-86. Carmona-Fonseca J, Henao S, Garcés R. Valores de referencia de actividad colinesterásica sanguínea en población laboral activa no expuesta a plaguicidas inhibidores de colinesterasa. Rev. Fac. Nal. Sal.Públ. (Medellín) 2000; 18 (2): 55-72. Carmona G, Baum I, Schindler C, Goldberg S, Jufer R, Cone E, Slaughter E, Belendiuk G, Gorelick D. Plasma butyrylcholinesterase activity and cocaine half-life differ significantly inrhesus and squirrel monkeys. Life. Sci. 59: 939–943. Carmona G, Schindler C, Greig N, Holloway H, Jufer R, Cone E, Gorelick D. Intravenous butyrylcholinesterase administration and plasma and brain levels of cocaine and metabolites in rats. European Journal of Pharmacology. 1996; 517: 186 – 190. Carmona G, Schindler C, Shoaib M, Jufer R, Cone E, Goldberg S, Greig N, Yu Q, Gorelick D. Attenuation of cocaine-induced locomotor activity by butyrylcholinesterase. Exp. Clin. Psychopharmacol. 1998; 6: 274–279. Carmona G, Jufer R, Goldberg S, Gorelick D, GreigN, Yu Q, Cone E, Schindler C. Butyrylcholinesteraseaccelerates cocaine metabolism: in vitro and in vivo effects in nonhumanprimates and humans. Drug. Metab. Dispos. 2000; 28: 367–371. Ceppa F, Gidenne S, Benois A, Fontan E, Burnat P. Rapid identification of atypical variant of plasma butyrylcholinesterase by PCR. Clin. Chem. Lab. Med. 2002; 40:799-801. Chasman D, Adams R. Predicting the functional consequences of nonsynonymous single nucleotide polymorphisms: structure-based assessment ofamino acid variation. J. Mol. Biol. 2001; 307 (2): 683–706. Chattonet A, Lockridge O. Comparisons of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 1989;260: 625-634. Chautard-Freire-Maia E, Primo-Parmo S, Picheth G, Lourenco M, Vieira M. The C5 isozyme of serum cholinesterase and adult weight.Hum. Hered. 1991;41: 330-339. Chou p, Fasman G. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974: 13(2): 211–222. Clayton D. Population association. En: Balding DJ, Bishop M, Cannings C, editors. Handbook of statistical genetics. West Sussex: Wiley 2001. Córdoba D, Toledo D. Cocaína y base de cocaína. Basuco. En: Toxicología. Cuarta edición. Bogotá: editorial manual moderno, 2001. 445-449. Cook D, Stiller R, Weakly J, Chakrovorti S, Brandon B, Welch R. In vitro metabolism of mivacurium chloride (BW B1090U) and succinylcholine. Anesth. Analg. 1989; 68(4): 452-456. Cooper J, Blomm F. Roth. The Biochemical basis of neuropharmacology. New York, Oxford: Oxford Press, 1982. Coye M, Lowe J, May K. Biological monitoring of agricultural workers exposed to pesticides. J. Occupational. Med. 1986; 28 (8): 619-627 (part I); 628-638 (part II). Crook M, Haq M, Tutt P. Serum lipids, acute phase proteins and serum cholinesterase in normal subjetcs. Scand. J. Lab. Invest. 1994; 54: 601-603. Creswell J. Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Fourth edition. Upper Saddle River, NJ. Pearson/Merrill Education, 2008. Cucco R, Yoo O, Cregler L, Chang J. Nonfatal pulmonary edemaafter “freebase” cocaine smoking. Am. Rev. Respir. Dis. 1987; 136: 179-181. Cucuianu M. Serum gamma-glutamiltransferase and/or serum cholinesterase as markers of the metabolic syndrome. The. Med. Clin. 1999; 22(8): 1381-1382. Darvesh S, Hopkins D, Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003; 4 (2): 131-138. De Peyster A, Willis W, Liebhaber M. Cholinesterase activity in pregnant women and newborns. J. Toxicol. Clin. Toxicol. 1994; 32 (6): 683-696. DellaPuppa T, Gallo C, Mencias E. Sustancias de abuso: Cocaína. Manual de Toxicología Básica. Madrid: ediciones Díaz de Santos,2000. 487-404. Déniz-Naranjo M, Muñoz-Fernández C, Alemany-Rodríguez M, Del Carmen Pérez-Vieitez M, Aladro-Benito Y, Irurita-Latasa J, Sánchez-García J. Butyrylcholinesterase, ApoE and Alzheimer's disease in a Population From the Canary Islands (Spain). Neurosci. Lett. 2007; 29 (1): 34-38, Suppl. 427. Deroche-Gamonet V, Belin D, Piazza P. Evidence for addiction-like behavior in the rat. Science.2004; 5686: 1014-1017. Dey D, Kanno T, Sudo K, Maekawa M. Genetic analysis of6 patients with no detectable butyrylcholinesterase activity – threenovel silent genes and heterogeneities of mutations in BCHE gene in Japan. Am. J. Hum. Genet. 1997; 61: Suppl. 2307. Dey D, Maekawa M, Sudo K, Kanno T. Butyrylcholinesterasegenes in individuals with abnormal inhibition numbers andwith trace activity: one common mutation and two novel silentgenes. Ann. Clin. Biochem. 1998; 35: 302-310 (Part 2). Di paolo N, Fineschi V, Di Paolo M, Wetly C, Garosi G, Del Vecchio M. Kidney vascular damage and cocaine. Clin. Nephrol. 1997; 47:298-303. EQM Research Inc. Cholinesterase kit for the field determination of pesticide exposure. Instruction manual. Cincinnati (Ohio): EQM, 1994. Escohotado A. La antigüedad remota. Las drogas: De los orígenes a la prohibición. Madrid (España): Alianza editorial S.A., 1994. 5-11. Evans R, Wroe J. Plasma cholinesterase changes during pregnancy. Their interpretation as a cause of suxamethonium-induced apnea. Anaesthesia. 1980; 35 (7): 651-654. Evans R, Wardell J. On the identification and frequency of the J and K cholinesterase phenotypes in a Caucasian population. J. Med. Genet. 1984; 21: 99-102. Fadel-Picheth C. Variabilidade do loco BCHEda butirilcolinesterase e pesodo adulto emamostra de Curitiba. Curitiba, 1991. 107f. Dissertação (Mestrado em Genética) – Setor de Ciências Biológicas, Universidade Federal do Paraná. Farre M, Cami J. Pharmacokinetic considerationsin abuse liability evaluation. Br. J. Addict. 1991;86:1601-1606. Forrester J, Steele A, Waldron J, Parsons P. Crack lung: an acute pulmonary syndrome with a spectrum of clinical and histopathologic findings. Am. Rev. Respir. Dis. 1990; 142: 462-467. Gaffney D, Campbell R.A PCR method to determine the Kalow allele frequencyand its significance in the normal population.J. Med. Genet. 1994;31: 248-250. Galbraith D. Human erythrocyte acetylcholinesterase in relation to cell age. Biomedical. J. 1981; 195: 221-228. García J, Muiño A, González C, Gilsanz C. Complicaciones pulmonares y cocaína. A propósito de un nuevo caso de neumomediastino. An. Med. Interna. 1994; 11:519. Garro K. Cocaína: actualización médico legal. Medicina Legal de Costa Rica. 2011; 28 (2): 57-62. Garry P.A manual and automated procedure for measuring serum cholinesterase activity and identifying enzyme variants. Clin. Chem. Acta. 1971; 17 (3): 192-198. Garry P, Deitz A, Lubrano T, Ford P, James K, Rubinstein H.New allele at cholinesterase locus 1. J. Med. Genet. 1976; 13: 38-42. Gätke M, Ostergaard D, Bundgaard J, Varin F, Viby-Mogensen J. Response to mivacurium in a patient compoundheterozygous for novel and a know silent mutation in thebutyrylcholinesterase gene: genotyping by sequencing. Anesthesiology. 2001; 95: 600–606. Gerreiro J, Santos S, Black F. Frequencies of the atypical and C5 variants of serum cholinesterase in Wayana - Apalai Indians. Rev. Bras. Genet. 1985; 8 (1): 123-129. Giraldo C. Cocaína Base: aspectos patológicos. En: Toxicología Córdoba. Cuarta edición. Bogotá: editorial manual moderno, 2001.451-453. Gnatt A, Prody C, Zamir R, Lieman-Hurwitz J, Zakut H, Soreq H. Expression of alternatively terminated unusual humanbutyrylcholinesterase messenger-RNA transcripts, mapping tochromosome 3q26-ter, in nervous-system tumors, Cancer Res. 1990; 50: 1983–1987. Gorelick D. Enhancing cocaine metabolism with butyrylcholinesteraseas a treatment strategy. Drug Alcohol Depend. 1997; 48:159–165. Goldman D, Oroszi G, Ducci F. The Genetics of addictions: Uncovering the genes. FOCUS. 2006;4:401-415. Goodall R. Association of clinical biochemists analytical investigations standing committee. Cholinesterase: phenotyping and genotyping. Ann. Clin. Biochem. 2004; 41: 98-110. Gottschalk C, Beauvais J, Hart R. Cognitive function and cerebral perfusion during cocaine abstinence. Am. J. Psychiatr. 2001; 158: 540-545. Greenberg C, Primo-Parmo S, Pantuck E, La Du B. Prolonged response to succinylcholine: a new variant of plasmacholinesterase that is identified as normal by traditional phenotyping methods. Anest. Analg. 1995; 81: 419–421. Hada T, Muratani K, Ohue T, Imanishi H, Moriwaki Y, Ito M, Amuro Y, Higashino K. A variant serum cholinesterase anda confirmed point mutation at Gly-365 to Arg found in a patientwith liver cirrhosis. Intern. Med. 1992; 31: 357–362. Hart C, Jatlow P, Sevarino K. Comparison of intravenous cocaethylene and cocaine in humans. Psychopharmacology. 2000; 149: 153-62. Harris H, Hopkinson D, Robson E. Two dimensional electrophoresis of pseudocholinesterase components in normal serum. Nature. 1962;196: 1296-1298. Harris H, Hopkinson D, Robson E, Whittaker M. Genetical studies on a new variant of serumcholinesterase detected by electrophoresis. Ann. Hum. Genet. 1963; 26: 359-382. Harris H.The principles of human biochemical genetics. Amsterdam: Elsevier, 1980. Hayes W Jr. Pesticides studies in man. Baltimore (Maryland, USA): Williams and Wilkins, 1982. Helmus T, Downey K, ArfkenL, Henderson M, Schuster C. Novelty seekingas a predictor of treatment retention forheroin dependent cocaine users. Drug Alcohol Depend. 2001; 61:287-295. Henao S, Corey G. Plaguicidas inhibidores de las colinesterasas. Serie Vigilancia 11. Centro Panamericano de Ecología Humana y Salud. Metepec (México): ECO, OPS, OMS, 1991. Henning R, Wilson L. Cocaethylene is as cardiotoxic as cocaine but is lesstoxic than cocaine plus ethanol. Life. Sci. 1996; 59: 615-27. Herzlich B, Arsura E, Pagala M, Grob D. Rhabdomyolysis related to cocaine abuse. Ann. Intern. Med. 1988; 109: 335-336. Hibi K, Trink B, Patturajan M, Westra W, Caballero O, Hill D, Ratovitski E, Jen J, Sidransky D. AIS is an oncogene amplified insquamous cell carcinoma. National Academy of Sciences of theUnited States of America. 2000; 97 (10): 5462-5467. Hidaka K, Iuchi I, Yamasaki T, Ohhara M, Shoda T, Primo-Parmo S, La Du B. Identification of two different genetic mutations associated with silent phenotypes for human serum cholinesterase in Japanese. Jpn. J. Clin. Pathol. 1992; 40: 535–540. Hidaka K, Iuchi I, Tomita M, Watanabe Y, Minatogawa Y, Iwasaki K, Gotoh K, Shimizu C. Genetic analysis of a Japanesepatient with butyrylcholinesterase deficiency, Ann. Hum. Genet. 1997; 61: 491–496. Hidaka K, Iuchi I, Yamasaki T, Ueda N, Hukano K. Nonsense mutation in exon 2 of the butyrylcholinesterase gene:a case of familial cholinesterasemia, Clin. Chim. Acta. 1997; 261: 27–34. Hidaka K, Watanabe Y, Tomita M, Ueda N, M. Higashi, Minatogawa Y, Iuchi I. Gene analysis of genomic DNA fromstored serum by polymerase chain reaction: identification of threemissense mutations in patients with cholinesterasemia and ABO genotyping.Clin. Chim.Acta. 2001; 303: 61–67. Hoffman R, Henry G, Wax P, Weisman R, Howland M, Goldfrank L. Decreased plasma cholinesterase activityenhances cocaine toxicity in mice. J. Pharmacol. Exp. Ther. 1992; 263: 698–702. Hser Y, Shen H, Grella C, Anglin M. Lifetime Severity Index for cocaine use disorder (LSI-Cocaine): A predictor of treatment outcomes. J. Nerv. Ment. Dis. 1999; 187 (12):742-750. Hutchinson A, Widdowson E. Cholinesteraselevels in the serum of healthy British children. Nature. 1952; 169:284-285. Ibáñez A. Genética de las adicciones. Adicciones. 2008; 20 (2): 103-110. Inaba T. Cocaine: pharmacokinetics and biotransformation in man. Can. J. Physiol. Pharm.1989; 67: 1154–1157. Iida S, Kinoshita M, Fujii H, Moriyama Y, Nakamura Y, Yura N, Moriwaki K. Mutations of human butyrylcholinesterase gene in a family with hypocholinesterasemia. Hum. Mutat. 1995; 6:349-351. Izumi M, Maekawa M, Kanno T. Butyrylcholinesterase K-variant in Japan: frequency of allele and associated enzyme activity in serum. Clin. Chem. 1994; 40:1606-1607. Jacobs D. Laboratory Test Handbook. 3ra Ed. EEUU: Lexi Comp. Inc, 1994. Jacobsen T, Grayburn P, Snyder II R, Hansen J, Chavoshan B, Landau C. Effects of intranasal cocaine on sympathetic nerve discharge in humans. J. Clin. Invest. 1997; 99: 628-634. Jaffe J. Drogadicción y abuso de drogas. En: Las bases farmacológicas de la Terapéutica Goodman and Gilman. Séptima edición. McGraw-Hill, 1996. 510-554. Jensen F, Bartels C, La Du B. Structural basis of the butyrylcholinesterase H-variant segregating in two Danish families. Pharmacogenetics. 1992; 2: 234-240. Jensen F, Nielsen L, Schwartz M. Detection of the plasma cholinesteraseK variant by PCR using an amplification-created restriction site.Hum. Hered. 1996; 46: 26-31. Jung V, Kindich R, Kamradt J, Jung M, Müller M, Schulz W, Engers R, Unteregger G, Stöckle M, Zimmermann R, Wullich B. Genomic and expression analysis of the 3q25-q26 amplification unit reveals TLOC1/SEC62 as a probable target gene in prostate cancer. Molecular Cancer Research. 2006; 4 (3): 169-176. Kaloyanova F. Toxicity of selected groups of pesticides: organophosfates. World Health Organization, Regional Office for Europe. Toxicology of pesticides.Copenhagen, Denmark: WHO, 1982: 133-144. Health Aspects of Chemical Safety; Interim Document Nº 9. Kalow W, Genest K. A method for the detection of atypical forms of human cholinesterase: determination of dibucaine numbers. Can. J. Biochem. Physiol. 1957; 35: 339-346. Kalow W, Staron N. On distribution and inheritance ofatypical forms of human serum cholinesterase, as indicated by dibucaína numbers. Can. J. Med. Sci. 1957; 35 (12):1305–1320. Kalow W. Pharmacogenetic: Heredity and the response to drugs. Philadelphia: W. B. Saunders, 1962. p. 69-93; 192-194. Kambam J, Naukam R, Berman M. Inhibition of pseudocholinesterase activity protects from cocaine-induced cardiorespiratorytoxicity in rats. J. Lab. Clin. Med. 1992; 119: 553– 556. Kambam J, Mets B, Hickman R, Janicki P, James M, Kirsch R. The effects of inhibition of plasma cholinesterase activity onsystemic toxicity and blood catecholamine levels from cocaine infusionin pigs. J. Lab. Clin. Med. 1993; 122: 188–196. Kamendulis, L, Brzezinski M, Pindel E, Bosron W, Dean R. Metabolism of cocaine and heroin is catalyzed bythe same human liver carboxylesterases. J. Pharmacol. Exp. Ther. 1996; 279:713–717. Kaniaris P, Fassoulaki A, Liarmakopoulou K, Dermitzakis E. Serum cholinesterase in patients with cancer. Anesth. Analg. 1979; 58: 82-84. Kaufman M, Levin J, Maas L. Cocaine-induced cerebral vasoconstriction differs as a function of sex and menstrual cycle phase. Biol. Psychiatr. 2001; 49: 774-781. Kavanagh D, McGrath J, Saunders J,Dore G, Clark D. Substance misuse in patientswith schizophrenia: epidemiology and management. Drugs 2002; 62:743-55. Kelz M, Chen J, Carlezon W Jr, Whisler K, Gilden L, Beckmann A, Steffen C, Zhang Y,Marotti L, Self D, Tkatch T, Baranauskas G, Surmeier D, Neve RL, Duman R, Picciotto MR, Nestler E. Expression of the transcription factor delta FosB in the brain controls sensitivity tococaine. Nature. 1999; 401: 272-276. Kendler K, Eaves J. Models for the joint effect ofgenotype and environment on liability to psychiatricillness. Am. J. Psychiatry. 1986; 143: 279-289. Kendler K. Social Support: A Genetic-EpidemiologicAnalysis. Am J Psychiatry 1997; 154/10: 1398-1404. Kessler R, Kendler K, Heat A, Neale M, Eaves L.Social support, depressed mood and adjustment tostress: A genetic epidemiologic investigation. J. Pers.Soc. Psychol. 1992; 62: 257-272. Klaassen C, Amdur M, Dull J, Casarett and Doull´s. Toxicology the Basic Science of Poisons. Fifth edition. International Edition, McGraw-Hill. 1994. 487-527. Kleerup E, Koyal S, Marques-Magallanes J, Goldman M, Taskhin D. Chronic and acute effects of “crack” cocaine on diffsing capacity, membrane diffusion and pulmonary capillary blood volume inthe lung. Chest. 2002; 122: 629-638. Koetzner L, Woods J. Characterization of butyrylcholinesterase antagonism of cocaine-induced hyperactivity. Drug. Metab. Dispos. 2002; 30: 716– 723. Kosten T. Pharmacotherapeutic interventions for cocaine abuse. Matching patients to treatments. J. Nerv. Ment. Dis. 1989; 177: 379-389. Krause A, Lane A, Jenkins T. A new high activity plasma cholinesterase variant.J. Med. Genet. 1988; 25: 677-681. Krejci E, Thomine S, Boschetti N, Legacy C, Sketelj J, Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J. Biological. 1997; 272: 22840-22847. Kutty K. Review: Biological function of cholinesterase. Clin. Biochem. 1980; 13: 239-243. La Du B, Bagels C, Nogueira C, Hajra A, Lightstone H, Van Der Speck A, LockridgeO. Phenotypic and molecular biological analysis of human butyrylcholinesterase variants. Clin. Biochem. 1990; 23: 423-431. La Du B, Bartels C, Nogueira C, Arpagaus M, Lockridge O. Proposed nomenclature for human butyrylcholinesterase genetic variants identified by DNA sequencing. Cell. Mol. Neurol. 1991; 11: 79-89. La Du B. The hereditary deficiencies of serum cholinesterase: an update for anesthesiologist. ASA Newsletter. 1996; 60(8): 18-22. Ladrón de Guevara J, Moya P. Psicoestimulantes. Toxicología médica, clínica y laboral. Primera edición. Madrid (España): McGraw-Hill- Interamericana, 1995. 605-615. Lapidot-Lifson Y, Prody C, Ginzberg D, Meytes D, Zakut H, Soreq H. Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: correlation with various leukemias and abnormal megakaryocytopoiesis. National Academy of Sciences of theUnited States of America, Washington. 1989; 86 (12): 4715-4719. Layer P, Weikert T, Willbold E. Chicken retinospheroids as developmental and pharmacological in vitro models: acetylcholinesterase is regulated by its own and by butyrylcholinesterase activity. Cell. Tissue. Res. 1992;268 : 409-418. Lejus C, Blanloeil Y, Burnat P, Souron R. Les colinestérases. Ann. Fr. Anesth. Reanim. 1998; 17: 1122-1135. Lee C. Goodbye suxamethonium! Anaesthesia. 2009; 64 (suppl1):73-81. Lehman, H. The familial incidence of low pseudocholinesterase level. Lancet2. 1956; 124. Leri F, Bruneau J, Stewart J. Understanding polydrug use: review of heroin and cocaine co-use. Addiction. 2003; 98:7-22. Levano S, Ginz H, Siegemund M, Miodrag F, Voronkov E, Urwyler A, Girard T. Genotyping the butyrylcholinesterase in patients with prolonged neuromuscular block after succinylcholine. Anesthesiology. 2005; 102: 531–535. Liu W, Cheng J, Iwasaki A, Imanishi H, Hada T. Novelmutation and multiple mutations found in the human butyrylcholinesterasegene. Clin. Chim. Acta. 2002; 326: 193–199. Lizasoaín I, Moro M, Lorenzo P. Cocaína: aspectos farmacológicos. Adicciones. 2001; 13: 37-46 (supl. 2). Lockridge O, Mottershaw-Jackson N, Eckerson H, La Du B. Hydrolysis of diacetylmorphine (heroin) by human serum cholinesterase. J. Pharmacol. Exp. Ther. 1980; 215(1):1–8. Lockridge O, Adkins S, La Du B. Location of disulfide bonds within the sequence of human serum cholinesterase. J. Biol. Chem. 1987; 262(27): 12945–12952. Lockridge O, Bartels C, Vaughan T, Wong C, Norton S, Johnson L. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem. 1987a; 262: 549-557. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol. Ther. 1990;47(1): 35–60. Lu W, Hada T, Fukui K, Imanishi H, Matsuoka N, Iwasaki A, Higashino K. Familial hypocholinesterasemia found in a family and a new confirmed mutation. Intern. Med. 1997; 36: 9–13. Lukas S, Sholar M, Lundahl L. Sex differences in plasma cocaine levels and subjective effects after acute cocaine administration in human volunteers. Psychopharmacology. 1996; 125: 346-354. Lynch T, Mattes C, Singh A, Bradley R, Brady R, Dretchen K. Cocaine detoxification by human plasma butyrylcholinesterase. Toxicol. Appl. Pharmacol. 1997; 145: 363– 371. Matsubara K, Kagawa M, FukuiY. In vivo and in vitro studies on cocaine metabolism: ecgonine methyl ester as a major metabolite of cocaine. Forensic. Sci. Int. 1984; 26: 169– 180. Maekawa M, Sudo K, Kanno T, Kotani K, Dey D, Ishikawa J, Izumi M, Etoh K. Genetic basis of the silent phenotype of serum butyrylcholinesterase in three compound heterozygotes. Clin. Chim. Acta. 1995; 235:41-57. Maekawa M, Sudo K, Kanno T, Kotani K, Dey D, Ishikawa J, Izume M. Genetic mutations of butyrylcholinesterase identified from phenotypic abnormalities in Japan. Clin. Chem. 1997; 43:924–929. Magura S, Kang SY, Rosenblum A. Gender differences in psychiatric comorbidity among cocaine-using opiate addicts. J. Addict. Dis. 1998; 17: 49-61. Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends. Neurosci. 2006; 29: 225-232. Manoharan I, Wieseler S, Layer P, Lockridge O, Boopathy R. Naturally occurring mutation Leu307Pro of human butyrylcholinesterase in the Vysya community of India. Pharmacogenet. Genomics. 2006; 7: 461-468. Martin A, Facciano A, Cuff A, Hernandez-Boussard T, Olivier M, Hainaut P, Thornton J. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum. Mutat. 2002; 19(2):149-64. Masson, P. A naturally occurring molecular form of human plasma cholinesterase isan albumin conjugate. Biochim. Bioph. Acta. 1989; 988: 258-266. Masson E, Chatonnet A, Lockridge O. Evidence fora single butyrylcholinesterase gene in individuals carrying the C5 cholinesterase variant. FEBS. Lett. 1990;262 (1): 115-118. Masson P, Xie W, Froment M, Lockridge O. Effects of mutations of activesite residues and amino acids interacting with the loop on substrate activation of butyrylcholinesterase. Biochim. Bioph. Acta. 2001; 1544: 166-176. Massoulié J, Bon S. The molecular forms of cholinesterase and acetylcholinesterasein vertebrates.Annual Review of Neurosciences. 1982; 5: 57-106. Mattes C, Lynch T, Singh A, Bradley R, Kellaris P, Brady R, Dretchen K. Therapeutic use of butyrylcholinesterasefor cocaine intoxication. Toxicol. Appl. Pharmacol. 1997; 145: 372-380. Matthew J, Collins A. Interactions of cocaine and cocaine congeners with sodium channels. Biochem. pharmacol.1983; 32:455-460. McCance-Katz F, Carroll K, Rounsaville B. Gender differences in treatment seeking cocaine abusers-implications for treatment and prognosis. Am. J. Addict. 1999; 8:300-311. McGuire M, Nogueira C, Bartels C, Lightstone H, Hajra A, Van der Spek A, Lockridge O, La Du B. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc. Natl. Acad. Sci. U.S.A. 1989; 86:953-957. McQueenM. Clinical, Analytical Considerations in the utilization of cholinesterase measurements. Clin. Chim. Acta. 1995;237:91–105. McTiernan, C, Adkins, S, Chatonnet, A, Vaughn, T, Bartels, C, Kott, M, Rosenberry, T, La Du, B, Lockridge, O. Brain cDNA clone for human cholinesterase. Proc. Natl. Acad. Sci. USA, Washington. 1987; 84: 6682-6686. Mikami L. Variabilidade dos exons 2 e 4 do gene BCHE e sua relação com atividade da butirilcolinesterase. Curitiba, 2005. 180f. Tese (Doutorado em Genética) – Setor de Ciências Biológicas, Universidade Federal do Paraná. Mikami L, Wieseler S, Souza R, Schopfer L, Nachon F. Five new naturally occurring mutations of the BCHE gene and frequencies of 12 butyrylcholinesterase alleles in a Brazilian population. Pharmacogenet. Genomics. 2008; 18: 213–218. Mesulam M, Guillozet A, Shaw P, Levey A, Duysen E, Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathwaysand can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002; 110: 627-639. Morton F. Detection of cholinesterase inhibition.The significance of cholinesterase measurements. Ann. Clin. Lab. Sci.1988; 18 (5); 345-452. Murray R, Albin R, Mergner W, Criner G. Diffuse alveolar hemorrhage temporally related to cocaine smoking. Chest. 1988; 93: 427-429. Nachon F, Nicolet Y, Viguie N, Masson P, Fontecilla-Camps J, Lockridge O. Engineering of a monomeric and low glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystalization. Eur. J. Biochem. 2002; 269: 630-637. Negráo A, Pereira A, Guindalini C, Santos H, Messas G, Laranjeira R, vallada H. Butyrylcholinesterase genetic variants: association with cocaine dependenceand related phenotypes. PLoS ONE. 2013; 8(11): e80505. doi:10.1371/journal.pone.0080505 Nestler E. Genes and addiction. Nature Genetics. 2000; 26: 277-281. Nestler E. Historical review: molecular and cellular mechanism of opiate and cocaine addiction. Trends. Pharmacol. Sci. 2004; 25: 208-210. Nogueira C, McGuire M, Graeser C, Bartels C, Arpagaus M, Van der Spek A, Lightstone H, Lockridge O, La Du B. Identification of a frameshift mutation responsible for the silent phenotype of human serum cholinesterase, GLY 117(GGTGGAG). Am. J. Hum. Genet. 1990; 40: 934–940. Nogueira C, Bartels C, McGuire M, Adkins S, Lubrano T, Rubinstein H, Lightstone H, Van der Spek A, Lockridge O, La Du B. Identification of two different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase, Am. J. Hum. Genet. 1992;51:821–828. On-Kei Chan A, Lam C, Tong S, Man Tung C, Yung K, Chan Y, Au K, Yuen Y, Hung, C, Ng K, Shek C. Novel mutations in the BCHE gene in patients with no butyrylcholinesterase activity. Clin. Chim. Acta. 2005; 351: 155-159. Palomino A. Adicción a la cocaína: estudio genómico de moduladores de la transmisión glutaminérgica. Memoria para optar al grado de Doctor. Universidad Complutense de Madrid. Madrid, 2008. ISBN: 978-84-692-0108-4. Parnas L, Procter M, Schwarz M, Mao R, Grenache D. Concordance of butyrylcholinesterase phenotype with genotype. Am. J. Clin. Pathol. 2011; 135:271-276. Pérez Gómez A. La cocaína en la historia y la cultura. Cocaína surgimiento y evolución de un mito. Bogotá: Editorial Presencia, 1987. Phillips, B.J., Hunter, J.M. (1992). Use of mivacurium chloride by constant infusion in the anephric patient. Br. J. Anaesth. 1992; 68: 492-498. Podoly E, Hanin G, Soreq H. Alanine-to-threonine substitutions and amyloid diseases: Butyrylcholinesterase as a case study. Chemico Biological Interactions. 2010; 187: 64–71. Poet T, McQueen C, Halpert J. Participation ofcytochromes P4502B and P4503A in cocaine toxicity in rat hepatocytes. Drug Metab. Dispos. 1996; 24:74–80. Primo-Parmo S, Chautard-Freire-Maia E. Absence of linkage between the serum cholinesterase (CHE1) and rhesus (RH) loci. Hum. Genet. 1982; 60 (3): 284-286. Primo-Parmo S, Bartels C, Wiersema B, Van der Spek A, Innis J, La Du B. Characterization of 12 silent allelesof the human butyrylcholinesterase (BCHE) gene. Am. J. Hum.Genet. 1996; 58: 52–64. Primo-Parmo S, Lightstone H, La Du B. Characterizationof an unstable variant (BChE115D) of human butyrylcholinesterase. Pharmacogenetics. 1997; 7: 27–34. Randall T. Cocaine, alcohol mix in body to form even longer lasting, morelethal drugs. JAMA. 1992; 267: 1043-1044. Reuter W, Geus P. Behavior of cholinesterase activity in lipid metabolism disorders. Z. Gesamte. Inn. Med. 1987; 42(13):371. Robertson G. Serum protein and cholinesterase changes in association with contraceptive pills. Lancet1. 1967; 232-325. Robson N, Robertson I, Whittaker M. Plasma cholinesterase changes during the puerperium. Anaesthesia. 1986; 41 (3): 243-249. Rosalki S. Genetic influences on diagnostic enzymes in plasma. Enzyme. 1988; 39 (2): 95-109. Rubinstein H, Dietz A, Lubrano T. E1(k), another quantitative variant at cholinesterase locus 1. J. Med. Genet. 1978; 15: 27-29. Ruprecht B, Schurmann M, Ziegenhagen M, vom Bauer E, Meir D, Schlaak M. Corrected normal values for serum ACE by genotyping the deletion/insertion-polymorphism of the ACE gene. Pneumologie. 2001; 55:326-332. Sakamoto N, Hidaka K, Fujisawa T, Maeda M, Iuchi I. Identification of a point mutation associated with a silentphenotype of human serum butyrylcholinesterase, a case of a familial cholinesterasemia. Clin. Chim. Acta. 1998; 274: 159–166. Sánchez C. La seudocolinesterasa como indicador de la función de síntesis hepatocelular comparado con la clasificación de Child-Pugh en pacientes con enfermedad hepática avanzada. Rev. Colombiana de Gastroenterología. 1998; 14(1): 1-4. Schmidt E, Schmidt E. Enzyme diagnosis of liverdiseases.Clin.Biochem.1993; 26: 241-25. Shafferman A, Kronman C, Flashner Y, Leitner M, Gorsfed H, Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D, Hare M, Silman I, Sussman J, Velan B. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Bio. Chem. 1992; 267: 17640-17644. Shibuta K, Abe M, Suzuki T. A new detection method for the K variant ofbutyrylcholinesterase based on PCR primer introduced restriction analysis (PCR-PIRA). J.Med. Genet. 1994; 31: 576-579. Shields K, Lewis J. The identification of butyrylcholinesterase (BCHE) polymorphisms in a small Australian Defense Force cohort. Department of Defense, Defense Science and Technology Organization, Australian Government, 2011. Solano M, Velilla J, Álvarez M. Intoxicación aguda por cocaína. A propósito de un caso. AN.MED.INTERNA. 2006; 23 (1): 31-33. Sonnerwith A, Leonard J. Métodos y Diagnósticos de LaboratorioClínico. 8va Ed. Buenos Aires: editorial médica panamericana, 1983. Souza R. Estudos sobre nova banda da butirilcolinesterase humana (C4/5) verificada em eletroforese. Curitiba, 1995. 74f. Dissertação (Mestrado em Genética) – Setor de Ciências Biológicas, Universidade Federal do Paraná. Souza R, Castro R, Pereira l, Freund A, Culpi L, Chautard-Freire-Maia E. Frequencies of the butyrylcholinesterase K mutationin the Brazilian population of European and African origin. Hum. Biol. Detroit. 1998; 70: 965-970. Souza R. Variação fenotípica e genotípica da butirilcolinesterase humana e sua relação com altura e índice de massa corporal. Curitiba, 2001. 146f. Tese (Doutorado em Genética) – Setor de Ciências Biológicas, Universidade Federal do Paraná. Souza R, Mikami L, Maegawa R, Chautard-Freire-Maia E. Four new mutations in the BCHE gene of human butyrylcholinesterase in a Brazilian blood donor sample. Molecular Genetics and Metabolism. 2005; 84: 349–353. Spanagel R, Weiss F. The dopamine hypothesisof reward: past and current status. Trends. Neurosci. 1999;22:521-527. Stolerman I. Drugs of abuse: behavioral principles, methods and terms. Trends. Pharmacol. Sci. 1992;13:170-176. Sudo K, Maekawa M, Kanno T, Akizuki S, Magara T. Three different point mutations in the butyrylcholinesterase gene of three Japanese subjects with a silent phenotype: possible Japanese type alleles. Clin. Biochem. 1996; 29: 165–169. Sudo K, Maekawa M, Akizuki S, Magara T, Ogasawara H, Tanaka T. Human butyrylcholinesterase L330I mutation belongs to a fluoride-resistant gene, by expression in human fetal kidney cells. Biochem. Biophys. Res. Commun. 1997; 240:372–375. Sugimori T.Shortened action of succinylcholine in individuals with cholinesterase C5 isozyme. Can. Anaesth. Soc. J. 1986; 33(3): 321-327. Sun H, Shen M, Pang Y, Lockridge O, Brimijoin S. Cocaine metabolism accelerated by a re-engineered human butyrylcholinesterase.J. Pharmacol. Exp. Ther. 2002; 302: 710–716. Takagi H, Narahara A, Takayama H, Shimoda R, Nagamine T, Mori M. A new point mutation in cholinesterase: relationship between multiple mutation sites and enzyme activity. Int. Hepatol. Commun. 1997; 6: 288–293. Tood D. Clinical Diagnosis and Management by Laboratory Methods. 17ma Ed. England: W. B Saunders Company, 1992. Trundle D, Marcial G. Detection of cholinesterase inhibition. The significance of cholinesterase measurements.Ann. Clin. Lab. Sci. 1988; 18: 345-352. USDHHS (U.S. Department of Health and Human Services).Drug abuse warning network, 1992.Washington: US Government Printing Office, 1993. Umeki, S. Biochemical abnormalities of the serum in anorexia nervosa. J. Nervous. Mental. Dis. 1993; 176: 503-506. Valentino R, Lockridge O, Eckerson H, La Du B. Prediction ofdrug sensitivity in individuals with atypical serum cholinesterasebased on in vitro biochemical studies. Biochem. Pharmacol.1981;30(12):1643-1649. Vallina E, Suárez R, García A, Arribas J. Síndrome de rabdomiolisis e hipertermia secundario al consumo de cocaína y/o éxtasis. Comunicación de dos nuevos casos y revisión del problema. An. Med. Interna. 2002; 19 (2): 85-88. Van Etten M, Anthony J. Comparative epidemiology of initial drug opportunities and transitions to first use: Marijuana, cocaine, hallucinogens and heroin. Drug Alcohol Depend. 1999; 54: 117-125. Van Thiel D, Perper J. Hepatotoxicity associated with cocaine abuse. Recent developments in alcoholism. New York: Plenum Press, 1992. 335-341. Venkataram B, Iyer G, Narayanan R, Joseph T. Erythrocyte and plasma cholinesterase activity in normal pregnancy. Indian. J. Phisiol. Pharmacol. 1990; 34 (1): 26-28. Vidal C. Expression of cholinesterases in brain and non-brain tumors. Chemico-Biological Interactions. 2005; 15 (157-158): 227-232. Welch R, Todd K, Krause G. Incidence of cocaine-associated rhabdomyolysis. Ann. Emerg. Med. 1991; 20: 154-157. Wescoe W, Hunt C, Riker W, Litt I. Regeneration rates of serum cholinesterase in normal individuals and in patients with liver damage. Am. J. Physiol. 1947; 149: 549-551. Whittaker M. Cholinesterase. New York: Karger, 1986. 1-126. Whittaker M, Britten J. E1H, a new allele at cholinesterase locus 1. Hum. Hered. 1987; 37: 54-58. Whittaker M, Crawford J, Lewis M. Some observations of levels of plasma cholinesterase activity within an obstetric population. Anaesthesia. 1988; 43 (1): 42-45. Whittaker M, Britten J. Recognition of two new phenotypes segregating the E1(k) allele for plasma cholinesterase. Hum. Hered. 1988; 38: 233-239. Weiss R, Griffin M, Hufford C. Early prediction of initiation of abstinence from cocaine: use of a craving questionnaire. Am. J. Addict. 1997; 6: 224-231. World Health Organization (WHO). Against drugs, Adopted resolution of the World Health Organization. Ginebra, 1997. World drug report 2013. United Nations, Office on Drug and crime. New York, 2013. Yen T, Nightingale B, Burns J, Sullivan D, Stewart P. Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clin. Chem. 2003; 49:1297–1308. Yoshida A, Motulsky A. A pseudocholinesterase variant (E Cynthiana) associated with elevated plasma enzyme activity. Am. J. Hum. Genet. 1969; 21: 486-498. Zakut H, Ehrlich G, Ayalón A, Prody C, Malinger G, Seidman S, Ginzberg D, Kehlenbach R, Soreq H. Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas. The Journal of Clinical Investigation. 1990; 86 (3): 900–908.
score 12,131701