Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia

En el mundo, Blastocystis ha sido reportado como el microorganismo eucariota más común en el intestino de humanos y animales, con prevalencias incluso hasta del 100%, junto con Giardia intestinalis, quien ha sido considerado el principal agente causal de cuadros diarreicos en humanos, afectando apro...

Descripción completa

Detalles Bibliográficos
Autor Principal: higuera-gelvez, adriana-marcela
Otros Autores: Ramírez, Juan David
Formato: Tesis de doctorado (Doctoral Thesis)
Lenguaje:Español (Spanish)
Publicado: Universidad del Rosario 2020
Materias:
Acceso en línea:https://repository.urosario.edu.co/handle/10336/30750
id ir-10336-30750
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Español (Spanish)
topic Diversidad
Blastocystis
Giardia intestinalis
Genética
Microbiología
Diversity
Blastocystis
Giardia intestinalis
Genetics
spellingShingle Diversidad
Blastocystis
Giardia intestinalis
Genética
Microbiología
Diversity
Blastocystis
Giardia intestinalis
Genetics
higuera-gelvez, adriana-marcela
Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia
description En el mundo, Blastocystis ha sido reportado como el microorganismo eucariota más común en el intestino de humanos y animales, con prevalencias incluso hasta del 100%, junto con Giardia intestinalis, quien ha sido considerado el principal agente causal de cuadros diarreicos en humanos, afectando aproximadamente 200 millones de individuos a nivel mundial. En general, el diagnóstico de ambos microorganismos se basa frecuentemente en la observación de formas típicas en heces y solo a nivel de investigación se busca su tipificación por medio del uso de técnicas moleculares. Además, cabe resaltar que, pocos genes han sido utilizados para evaluar sus características a nivel genético y que la mayoría de estudios moleculares se han enfocado únicamente a la tipificación y pocos han incluído la evaluación de la diversidad genética y estructura de poblaciones intra e inter grupos, dejando de lado el estudio de su biología, taxonomía, distribución, potencial zoonótico de transmisión e incluso obtener evidencia que permita esclarecer si su estructura poblacional es de tipo sexual o clonal. En Colombia la situación no es muy diferente a lo reportado en otros países, principalmente aquellos en vía de desarrollo, donde las condiciones comportamentales, socioeconómicas y ambientales favorecen la transmisión de algunas enfermedades intestinales, y, zonas con alta endemicidad propenden por el aumento en la variación genética de estos microorganismos, que, posiblemente, junto con el ambiente de fuerte competencia a nivel intestinal, hacen más factible la ampliación hacia nuevos hospederos y por ende mantienen la transmisión zoonótica, tanto con animales domésticos como silvestres, cumpliendo un papel fundamental en el mantenimiento de los ciclos epidemiológicos y haciendo cada vez más difícil el control y prevención de estas infecciones. Por esta razón, éste estudio buscó, no solamente detectar molecularmente estos microorganismos en diferentes regiones del país, sino también conocer sus genotipos circulantes, realizando un primer acercamiento a la epidemiología molecular de estos parásitos intestinales en las zonas evaluadas, y posteriormente, evaluar la diversidad existente a nivel intra taxa tanto de G. intestinalis como de Blastocystis, por medio del análisis de nuevos blancos genéticos que nos permitieron demostrar una gran variación genética, particularmente relacionada con posibles eventos de intercambio genético en G. intestinalis y variación intra Subtipo (ST) en el caso de Blastocystis. Los resultados producidos por esta tesis permitieron: a) describir una primera aproximación de la frecuencia de cada uno de los microorganismos parasitarios evaluados, como Blastocystis, G. intestinalis, Cryptosporidium y el complejo Entamoeba histolytica/dispar/moshkovskii en cinco regiones biogeográficas de Colombia, sugiriendo que la región del Caribe tiene una mayor frecuencia para cada uno de estos. Además, gracias a los ensamblajes de Giardia, los STs de Blastocystis y especies de Cryptosporidium halladas, 11 mostrar la posible transmisión zoonótica de estos microorganismos hacia los seres humanos en algunas regiones del país, b) mostrar la variabilidad genética presente en G. intestinalis y los eventos de intercambio genético intra e inter ensamblaje, por medio de la evaluación de nueve blancos genéticos y finalmente c) determinar la diversidad genética de Blastocystis y su variación intra subtipo, gracias al uso en conjunto del gen ribosomal 18s y el gen metabólico sdhA. En conclusión, estos resultados muestran la gran necesidad de seguir evaluando las características genéticas de estos microorganismos, primordialmente en Colombia, para lograr establecer intervenciones de control y prevención más efectivas, y más aún, teniendo en cuenta, que la gran diversidad encontrada puede influir directamente en su prevalencia, dinámica de transmisión y virulencia. Quizás, en un futuro cercano, el uso de análisis genómicos de cepas aisladas a partir de muestras colombianas, puedan dar solución a algunos de los vacíos del conocimiento que permanecen en torno a estos microorganismos y sus características biológicas.
author2 Ramírez, Juan David
author_facet Ramírez, Juan David
higuera-gelvez, adriana-marcela
format Tesis de doctorado (Doctoral Thesis)
author higuera-gelvez, adriana-marcela
author_sort higuera-gelvez, adriana-marcela
title Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia
title_short Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia
title_full Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia
title_fullStr Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia
title_full_unstemmed Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia
title_sort diversidad genética de blastocystis y giardia intestinalis en diferentes regiones de colombia
publisher Universidad del Rosario
publishDate 2020
url https://repository.urosario.edu.co/handle/10336/30750
_version_ 1689308802050949120
spelling ir-10336-307502021-01-15T08:03:12Z Diversidad genética de Blastocystis y Giardia intestinalis en diferentes regiones de Colombia Genetic diversity of Blastocystis and Giardia intestinalis in different regions of Colombia higuera-gelvez, adriana-marcela Ramírez, Juan David Diversidad Blastocystis Giardia intestinalis Genética Microbiología Diversity Blastocystis Giardia intestinalis Genetics En el mundo, Blastocystis ha sido reportado como el microorganismo eucariota más común en el intestino de humanos y animales, con prevalencias incluso hasta del 100%, junto con Giardia intestinalis, quien ha sido considerado el principal agente causal de cuadros diarreicos en humanos, afectando aproximadamente 200 millones de individuos a nivel mundial. En general, el diagnóstico de ambos microorganismos se basa frecuentemente en la observación de formas típicas en heces y solo a nivel de investigación se busca su tipificación por medio del uso de técnicas moleculares. Además, cabe resaltar que, pocos genes han sido utilizados para evaluar sus características a nivel genético y que la mayoría de estudios moleculares se han enfocado únicamente a la tipificación y pocos han incluído la evaluación de la diversidad genética y estructura de poblaciones intra e inter grupos, dejando de lado el estudio de su biología, taxonomía, distribución, potencial zoonótico de transmisión e incluso obtener evidencia que permita esclarecer si su estructura poblacional es de tipo sexual o clonal. En Colombia la situación no es muy diferente a lo reportado en otros países, principalmente aquellos en vía de desarrollo, donde las condiciones comportamentales, socioeconómicas y ambientales favorecen la transmisión de algunas enfermedades intestinales, y, zonas con alta endemicidad propenden por el aumento en la variación genética de estos microorganismos, que, posiblemente, junto con el ambiente de fuerte competencia a nivel intestinal, hacen más factible la ampliación hacia nuevos hospederos y por ende mantienen la transmisión zoonótica, tanto con animales domésticos como silvestres, cumpliendo un papel fundamental en el mantenimiento de los ciclos epidemiológicos y haciendo cada vez más difícil el control y prevención de estas infecciones. Por esta razón, éste estudio buscó, no solamente detectar molecularmente estos microorganismos en diferentes regiones del país, sino también conocer sus genotipos circulantes, realizando un primer acercamiento a la epidemiología molecular de estos parásitos intestinales en las zonas evaluadas, y posteriormente, evaluar la diversidad existente a nivel intra taxa tanto de G. intestinalis como de Blastocystis, por medio del análisis de nuevos blancos genéticos que nos permitieron demostrar una gran variación genética, particularmente relacionada con posibles eventos de intercambio genético en G. intestinalis y variación intra Subtipo (ST) en el caso de Blastocystis. Los resultados producidos por esta tesis permitieron: a) describir una primera aproximación de la frecuencia de cada uno de los microorganismos parasitarios evaluados, como Blastocystis, G. intestinalis, Cryptosporidium y el complejo Entamoeba histolytica/dispar/moshkovskii en cinco regiones biogeográficas de Colombia, sugiriendo que la región del Caribe tiene una mayor frecuencia para cada uno de estos. Además, gracias a los ensamblajes de Giardia, los STs de Blastocystis y especies de Cryptosporidium halladas, 11 mostrar la posible transmisión zoonótica de estos microorganismos hacia los seres humanos en algunas regiones del país, b) mostrar la variabilidad genética presente en G. intestinalis y los eventos de intercambio genético intra e inter ensamblaje, por medio de la evaluación de nueve blancos genéticos y finalmente c) determinar la diversidad genética de Blastocystis y su variación intra subtipo, gracias al uso en conjunto del gen ribosomal 18s y el gen metabólico sdhA. En conclusión, estos resultados muestran la gran necesidad de seguir evaluando las características genéticas de estos microorganismos, primordialmente en Colombia, para lograr establecer intervenciones de control y prevención más efectivas, y más aún, teniendo en cuenta, que la gran diversidad encontrada puede influir directamente en su prevalencia, dinámica de transmisión y virulencia. Quizás, en un futuro cercano, el uso de análisis genómicos de cepas aisladas a partir de muestras colombianas, puedan dar solución a algunos de los vacíos del conocimiento que permanecen en torno a estos microorganismos y sus características biológicas. In the world, Blastocystis has been reported as the most common eukaryotic microorganism in the intestine of humans and animals, with prevalences even up to 100%, along with Giardia intestinalis, which has been considered the main causal agent of diarrheal pictures in humans, affecting approximately 200 million individuals worldwide. In general, the diagnosis of both microorganisms is frequently based on the observation of typical forms in feces and only at the research level is their typification sought through the use of molecular techniques. In addition, it should be noted that few genes have been used to evaluate their characteristics at the genetic level and that most molecular studies have focused solely on typing and few have included the evaluation of genetic diversity and structure of intra- and inter-group populations. , leaving aside the study of its biology, taxonomy, distribution, zoonotic transmission potential and even obtaining evidence to clarify whether its population structure is sexual or clonal. In Colombia, the situation is not very different from that reported in other countries, mainly those under development, where behavioral, socioeconomic and environmental conditions favor the transmission of some intestinal diseases, and areas with high endemicity tend to increase in genetic variation of these microorganisms, which, possibly, together with the environment of strong competition at the intestinal level, make the expansion to new hosts more feasible and therefore maintain zoonotic transmission, both with domestic and wild animals, fulfilling a fundamental role in the maintenance of epidemiological cycles and making the control and prevention of these infections increasingly difficult. For this reason, this study sought, not only to molecularly detect these microorganisms in different regions of the country, but also to know their circulating genotypes, making a first approach to the molecular epidemiology of these intestinal parasites in the evaluated areas, and later, evaluating the existing diversity at the intra taxa level of both G. intestinalis and Blastocystis, through the analysis of new genetic targets that allowed us to demonstrate great genetic variation, particularly related to possible genetic exchange events in G. intestinalis and intra-Subtype (ST) variation in the case of Blastocystis. The results produced by this thesis allowed: a) to describe a first approximation of the frequency of each of the parasitic microorganisms evaluated, such as Blastocystis, G. intestinalis, Cryptosporidium and the Entamoeba histolytica / dispar / moshkovskii complex in five biogeographic regions of Colombia, suggesting that the Caribbean region has a higher frequency for each of these. Furthermore, thanks to the assemblages of Giardia, the STs of Blastocystis and Cryptosporidium species found, 11 show the possible zoonotic transmission of these microorganisms to humans in some regions of the country, b) show the genetic variability present in G. intestinalis and the intra- and inter-assembly genetic exchange events, by evaluating nine genetic targets and finally c) determining the genetic diversity of Blastocystis and its intra-subtype variation, thanks to the joint use of the ribosomal gene 18s and the metabolic gene sdhA. In conclusion, these results show the great need to continue evaluating the genetic characteristics of these microorganisms, primarily in Colombia, in order to establish more effective control and prevention interventions, and even more so, taking into account that the great diversity found can directly influence in its prevalence, transmission dynamics and virulence. Perhaps, in the near future, the use of genomic analysis of strains isolated from Colombian samples may solve some of the knowledge gaps that remain regarding these microorganisms and their biological characteristics. Ministerio de Ciencia Tecnología e Innovación - Minciencias 2020-10-30 2021-01-14T21:16:06Z info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion https://repository.urosario.edu.co/handle/10336/30750 spa Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess application/pdf Universidad del Rosario Doctorado en Ciencias Biomédicas y Biológicas Facultad de Ciencias Naturales y Matemáticas instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR Silberman JD, Sogin ML, Leipe DD, Clark CG. Human parasite finds taxonomic home. Nature. 1996;380(6573):398. DOI: 10.1038/380398a0. Arisue N, Hashimoto T, Yoshikawa H, Nakamura Y, Nakamura G, Nakamura F, et al. Phylogenetic position of Blastocystis hominis and of stramenopiles inferred from multiple molecular sequence data. J Eukaryot Microbiol. 2002;49(1):42-53. DOI: 10.1111/j.1550-7408.2002.tb00339.x. Ramírez JD, Sánchez A, Hernández C, Flórez C, Bernal MC, Giraldo JC, et al. Geographic distribution of human Blastocystis subtypes in South America. Infect Genet Evol. 2016;41:32-5. doi: 10.1016/j.meegid.2016.03.017. Stensvold CR, Alfellani M, Clark CG. Levels of genetic diversity vary dramatically between Blastocystis subtypes. Infect Genet Evol. 2012;12(2):263-73. doi: 10.1016/j.meegid.2011.11.002. El Safadi D, Gaayeb L, Meloni D, Cian A, Poirier P, Wawrzyniak I, et al. Children of Senegal River Basin show the highest prevalence of Blastocystis sp. ever observed worldwide. BMC Infect Dis. 2014;14:164. doi: 10.1186/1471-2334-14-164. Wawrzyniak I, Poirier P, Viscogliosi E, Dionigia M, Texier C, Delbac F, et al. Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis. Ther Adv Infect Dis. 2013;1(5):167-78. doi: 10.1177/2049936113504754. Tan KSW, Mirza H, Teo JDW, Wu B, Macary PA. Current Views on the Clinical Relevance of Blastocystis spp.Curr Infect Dis Rep. 2010;12(1):28-35. doi: 10.1007/s11908-009-0073-8. Verma R, Delfanian K. Blastocystis hominis associated acute urticaria. Am J Med Sci. 2013; 346(1):80-1. https://doi.org/10.1097/MAJ.0b013e3182801478. Roberts T, Stark D, Harkness J, Ellis J. Subtype distribution of Blastocystis isolates identified in a Sydney population and pathogenic potential of Blastocystis. Eur J Clin Microbiol Infect Dis. 2013;32(3):335-43. doi: 10.1007/s10096-012-1746-z. Vogelberg C, Stensvold CR, Monecke S, Ditzen A, Stopsack K, Heinrich-Gräfe U, et al. Blastocystis sp. subtype 4 is common in Danish Blastocystis-positive patients presenting with acute diarrhea. Parasitol Int. 2010;59(3):469-71. doi: 10.1016/j.parint.2010.03.009. Stensvold CR, Christiansen DB, Olsen KE, Nielsen HV. Blastocystis sp. Subtype 4 is Common in Danish Blastocystis-Positive Patients Presenting with Acute Diarrhea. Am J Trop Med Hyg. 2011;84(6):883-5. doi: 10.4269/ajtmh.2011.11-0005. Ramirez JD, Sanchez LV, Bautista DC, Corredor AF, Florez AC, Stensvold CR. Blastocystis subtypes detected in humans and animals from Colombia. Infect Genet Evol. 2014;22:223-8. doi: 10.1016/j.meegid.2013.07.020 Tan KSW. New Insights on Classification, Identification, and Clinical Relevance of Blastocystis spp. Clin Microbiol Rev. 2008;21(4):639-65. doi: 10.1128/CMR.00022-08. Abe N, Wu Z, Yoshikawa H. Molecular characterization of Blastocystis isolates from primates. Vet Parasitol. 2003;113(3-4):321-5. DOI: 10.1016/s0304- 4017(03)00081-5. Clark CG. Extensive genetic diversity in Blastocystis hominis. Mol Biochem Parasitol. 1997;87(1):79-83. DOI: 10.1016/s0166-6851(97)00046-7. Yoshikawa H, Nagono I, Yap EH, Singh M, Takahashi Y. DNA polymorphism revealed by arbitrary primers polymerase chain reaction among Blastocystis strains isolated from humans, a chicken, and a reptile. J Eukaryot Microbiol. 1996;43(2):127- 30. DOI: 10.1111/j.1550-7408.1996.tb04492.x. Arisue N, Hashimoto T, Yoshikawa H. Sequence heterogeneity of the small subunit ribosomal RNA genes among blastocystis isolates. Parasitology. 2003;126(Pt 1):1-9. DOI: 10.1017/s0031182002002640. Ho LC, Armiugam A, Jeyaseelan K, Yap EH, Singh M. Blastocystis elongation factor-1alpha: genomic organization, taxonomy and phylogenetic relationships. Parasitology. 2000;121 ( Pt 2):135-44. DOI: 10.1017/s0031182099006113. Gentekaki E, Curtis BA, Stairs CW, Klimes V, Elias M, Salas-Leiva DE, et al. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 2017;15(9):e2003769. doi: 10.1371/journal.pbio.2003769. Wawrzyniak I, Courtine D, Osman M, Hubans-Pierlot C, Cian A, Nourrisson C, et al. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1. Genom Data. 2015;4:22-3. doi: 10.1016/j.gdata.2015.01.009. Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, et al. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 2011;12(3):R29. doi: 10.1186/gb-2011-12-3-r29. Scicluna SM, Tawari B, Clark CG. DNA barcoding of blastocystis. Protist. 2006;157(1):77-85. DOI: 10.1016/j.protis.2005.12.001. Stensvold CR, Suresh GK, Tan KS, Thompson RC, Traub RJ, Viscogliosi E, et al. Terminology for Blastocystis subtypes--a consensus. Trends Parasitol. 2007;23(3):93-6. DOI: 10.1016/j.pt.2007.01.004. Maloney JG, Molokin A, da Cunha MJ, Cury MC, Santin M. Blastocystis subtype distribution in domestic and captive wild bird species from Brazil using next generation amplicon sequencing. Parasite epidemiol Control. 2020 May 1;9:e00138. doi: 10.1016/j.parepi.2020.e00138. Clark CG, van der Giezen M, Alfellani MA, Stensvold CR. Recent developments in Blastocystis research. Adv Parasitol. 2013;82:1-32. doi: 10.1016/B978-0-12-407706-5.00001-0. Poirier P, Meloni D, Nourrisson C, Wawrzyniak I, Viscogliosi E, Livrelli V, et al. Molecular subtyping of Blastocystis spp. using a new rDNA marker from the mitochondria-like organelle genome. Parasitology. 2014 Apr 1;141(5):670. doi: 10.1017/S0031182013001996. Alarcon-Valdes P, Villalobos G, Martinez-Flores WA, Lopez-Escamilla E, Gonzalez-Arenas NR, Romero-Valdovinos M, et al. Can the pyruvate: ferredoxin oxidoreductase (PFOR) gene be used as an additional marker to discriminate among Blastocystis strains or subtypes? Parasit Vectors. 2018;11(1):564. doi: 10.1186/s13071-018-3141-9. Villalobos G, Orozco-Mosqueda GE, Lopez-Perez M, Lopez-Escamilla E, Cordoba-Aguilar A, Rangel-Gamboa L, et al. Suitability of internal transcribed spacers (ITS) as markers for the population genetic structure of Blastocystis spp. Parasit Vectors. 2014;7:461. doi: 10.1186/s13071-014-0461-2. Perez-Brocal V, Clark CG. Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol. 2008;25(11):2475-82. doi: 10.1093/molbev/msn193. Wawrzyniak I, Roussel M, Diogon M, Couloux A, Texier C, Tan KS, et al. Complete circular DNA in the mitochondria-like organelles of Blastocystis hominis. Int J Parasitol. 2008;38(12):1377-82. doi: 10.1016/j.ijpara.2008.06.001. Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, et al. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18(8):580-5. doi: 10.1016/j.cub.2008.03.037. Christmas PB, Turrens JF. Separation of NADH-fumarate reductase and succinate dehydrogenase activities in Trypanosoma cruzi. FEMS Microbiol Lett. 2000;183(2):225-8. DOI: 10.1111/j.1574-6968.2000.tb08962.x. Kregiel D. Succinate dehydrogenase of Saccharomyces cerevisiae–the unique enzyme of TCA cycle–current knowledge and new perspectives. 2012. In: Dehydrogenases [Internet]. [211-34]. Available from: https://www.intechopen.com/books/dehydrogenases/succinate-dehydrogenase-of saccharomyces-cerevisiae-the-unique-enzyme-of-tca-cycle-current-knowledge. Huang S, Millar AH. Succinate dehydrogenase: the complex roles of a simple enzyme. Curr Opin Plant Biol. 2013;16(3):344-9. doi: 10.1016/j.pbi.2013.02.007. Berg OG, Kurland CG. Why mitochondrial genes are most often found in nuclei. Mol Biol Evol. 2000 Jun 1;17(6):951-61. https://doi.org/10.1093/oxfordjournals.molbev.a026376 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7. DOI: 10.1093/nar/gkh340. https://doi.org/10.1093/nar/gkh340. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-4. doi: 10.1093/molbev/msw054. Sanchez A, Munoz M, Gomez N, Tabares J, Segura L, Salazar A, et al. Molecular Epidemiology of Giardia, Blastocystis and Cryptosporidium among Indigenous Children from the Colombian Amazon Basin. Front Microbiol. 2017;8:248. doi: 10.3389/fmicb.2017.00248. Stensvold CR, Ahmed UN, Andersen LO, Nielsen HV. Development and evaluation of a genus-specific, probe-based, internal-process-controlled real-time PCR assay for sensitive and specific detection of Blastocystis spp. J Clin Microbiol. 2012;50(6):1847-51. doi: 10.1128/JCM.00007-12. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020 May 1;37(5):1530-4. https://doi.org/10.1093/molbev/msaa015. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242-5. doi: 10.1093/nar/gkw290. Huson, DH, Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23(2):254-267, doi: 10.1093/molbev/msj030. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37-48. doi: 10.1093/oxfordjournals.molbev.a026036. Tomasini N, Lauthier JJ, Llewellyn MS, Diosque P. MLSTest: novel software for multi-locus sequence data analysis in eukaryotic organisms. Infect Genet Evol. 2013 Dec 1;20:188-96. doi: 10.1016/j.meegid.2013.08.029. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585-95. Muñoz M, Camargo M, Ramírez JD. Estimating the intra-taxa diversity, population genetic structure, and evolutionary pathways of Cryptococcus neoformans and Cryptococcus gattii. Front Genet. 2018;24(9):148. https://doi.org/10.3389/fgene.2018.00148. Singh B. Evolutionary biology: concepts of punctuated equilibrium, concerted evolution and coevolution. J. Sci. Res. 2014;58:15-26. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358-70. doi: 10.1111/j.1558-5646.1984.tb05657.x. Anderson TJ. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends Parasitol. 2001;17(4):183-8. DOI: 10.1016/s1471-4922(00)01944-9. Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175(2):477-85. DOI: 10.1534/genetics.107.071399. Wei K, Zhang T, Ma L. Divergent and convergent evolution of housekeeping genes in human-pig lineage. PeerJ. 2018;6:e4840. doi: 10.7717/peerj.4840. Maiden M. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2006;60:561-88. DOI: 10.1146/annurev.micro.59.030804.121325. Mohamed RT, El-Bali MA, Mohamed AA, Abdel-Fatah MA, El-Malky MA, Mowafy NM, et al. Subtyping of Blastocystis sp. isolated from symptomatic and asymptomatic individuals in Makkah, Saudi Arabia. Parasit Vectors. 2017;10(1):174. doi: 10.1186/s13071-017-2114-8. Ramirez JD, Florez C, Olivera M, Bernal MC, Giraldo JC. Blastocystis subtyping and its association with intestinal parasites in children from different geographical regions of Colombia. PLoS One. 2017;12(2):e0172586. doi:10.1371/journal.pone.0172586. Zulfa F, Sari IP, Kurniawan A. Association of Blastocystis subtypes with diarrhea in children. IOP Publishing. Journal of Physics: Conference Series; 2017. p. 012031. DOI: 10.1088/1742-6596/884/1/012031. Villamizar X, Higuera A, Herrera G, Vasquez-A LR, Buitron L, Muñoz LM, et al. Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: a cross-sectional study. BMC Infect Dis. 2019;19(1):190. doi: 10.1186/s12879-019-3810-0. Hart MW, Sunday J. Things fall apart: biological species form unconnected parsimony networks. Biol Lett. 2007;3(5):509-12. doi: 10.1098/rsbl.2007.0307. Tarcz S, Przyboś E, Surmacz M. An assessment of haplotype variation in ribosomal and mitochondrial DNA fragments suggests incomplete lineage sorting in some species of the Paramecium aurelia complex (Ciliophora, Protozoa). Mol Phylogenet Evol. 2013;67(1):255-65. doi: 10.1016/j.ympev.2013.01.016. Choy SH, Mahdy MAK, Al-Mekhlafi HM, Low VL, Surin J. Population expansion and gene flow in Giardia duodenalis as revealed by triosephosphate isomerase gene. Parasit Vectors. 2015;8:454. doi: 10.1186/s13071-015-1084-y. Meloni D, Poirier P, Mantini C, Noël C, Gantois N, Wawrzyniak I, et al. Mixed human intra- and inter-subtype infections with the parasite Blastocystis sp. Parasitol Int. 2012;61(4):719-22. doi: 10.1016/j.parint.2012.05.012. Rojas-Velázquez L, Morán P, Serrano-Vázquez A, Fernández LD, Pérez-Juárez H, Poot-Hernández AC, et al. Genetic Diversity and Distribution of Blastocystis Subtype 3 in Human Populations, with Special Reference to a Rural Population in Central Mexico. Biomed Res Int. 2018;2018. doi: 10.1155/2018/3916263. Son UH, Dinzouna-Boutamba SD, Lee S, Yun HS, Kim JY, Joo SY, et al. Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation. Korean J Parasitol. 2017;55(2):149-58. doi: 10.3347/kjp.2017.55.2.149. Hudson RR, Kaplan NL. Deleterious background selection with recombination. Genetics. 1995;141(4):1605-17. Lewis M, Llewellyn M, Yeo M, Messenger L, Miles M. Experimental and natural recombination in Trypanosoma cruzi. 2017. In: American Trypanosomiasis Chagas Disease [Internet]. Elsevier; [455-73]. doi:10.1016/B978-0-12-801029-7.00020-4. Inbar E, Shaik J, Iantorno SA, Romano A, Nzelu CO, Owens K, et al. Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genet. 2019;15(5):e1008042. doi: 10.1371/journal.pgen.1008042. Cacciò SM, Sprong H. Giardia duodenalis: genetic recombination and its implications for taxonomy and molecular epidemiology. Exp Parasitol. 2010;124(1):107-12. doi: 10.1016/j.exppara.2009.02.007. Cooper MA, Adam RD, Worobey M, Sterling CR. Population genetics provides evidence for recombination in Giardia. Curr Biol. 2007;17(22):1984-8. DOI: 10.1016/j.cub.2007.10.020. Barrett LG, Thrall PH, Burdon JJ, Linde CC. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol Evol. 2008;23(12):678-85. doi: 10.1016/j.tree.2008.06.017. Blouin MS, Yowell CA, Courtney CH, Dame JB. Host movement and the genetic structure of populations of parasitic nematodes. Genetics. 1995;141(3):1007-14.
score 11,828437