Filling the gap: a tool to automate parameter estimation for software performance models

Software performance engineering heavily relies on application and resource models that enable the prediction of Quality-of-Service metrics. Critical to these models is the accuracy of their parameters, the value of which can change with the application and the resources where it is deployed. In thi...

Descripción completa

Detalles Bibliográficos
Autores Principales: Wang, Weikun, Pérez, Juan F., Casale, Giuliano
Formato: Capítulo de libro (Book Chapter)
Lenguaje:Inglés (English)
Publicado: Association for Computing Machinery 2015
Materias:
Acceso en línea:https://repository.urosario.edu.co/handle/10336/28534
https://doi.org/10.1145/2804371.2804379
id ir-10336-28534
recordtype dspace
spelling ir-10336-285342020-08-28T15:50:38Z Filling the gap: a tool to automate parameter estimation for software performance models Llenar el vacío: una herramienta para automatizar la estimación de parámetros para modelos de rendimiento de software Wang, Weikun Pérez, Juan F. Casale, Giuliano Software performance engineering Quality of service Software performance engineering heavily relies on application and resource models that enable the prediction of Quality-of-Service metrics. Critical to these models is the accuracy of their parameters, the value of which can change with the application and the resources where it is deployed. In this paper we introduce the Filling-the-gap (FG) tool, which automates the parameter estimation of application performance models. This tool implements a set of statistical routines to estimate the parameters of performance models, which are automatically executed using monitoring information kept in a local database. 2015-09 2020-08-28T15:49:17Z info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion ISBN: 978-1-4503-3817-2 https://repository.urosario.edu.co/handle/10336/28534 https://doi.org/10.1145/2804371.2804379 eng info:eu-repo/semantics/restrictedAccess application/pdf Association for Computing Machinery QUDOS 2015: Proceedings of the 1st International Workshop on Quality-Aware DevOps
institution EdocUR - Universidad del Rosario
collection DSpace
language Inglés (English)
topic Software performance engineering
Quality of service
spellingShingle Software performance engineering
Quality of service
Wang, Weikun
Pérez, Juan F.
Casale, Giuliano
Filling the gap: a tool to automate parameter estimation for software performance models
description Software performance engineering heavily relies on application and resource models that enable the prediction of Quality-of-Service metrics. Critical to these models is the accuracy of their parameters, the value of which can change with the application and the resources where it is deployed. In this paper we introduce the Filling-the-gap (FG) tool, which automates the parameter estimation of application performance models. This tool implements a set of statistical routines to estimate the parameters of performance models, which are automatically executed using monitoring information kept in a local database.
format Capítulo de libro (Book Chapter)
author Wang, Weikun
Pérez, Juan F.
Casale, Giuliano
author_facet Wang, Weikun
Pérez, Juan F.
Casale, Giuliano
author_sort Wang, Weikun
title Filling the gap: a tool to automate parameter estimation for software performance models
title_short Filling the gap: a tool to automate parameter estimation for software performance models
title_full Filling the gap: a tool to automate parameter estimation for software performance models
title_fullStr Filling the gap: a tool to automate parameter estimation for software performance models
title_full_unstemmed Filling the gap: a tool to automate parameter estimation for software performance models
title_sort filling the gap: a tool to automate parameter estimation for software performance models
publisher Association for Computing Machinery
publishDate 2015
url https://repository.urosario.edu.co/handle/10336/28534
https://doi.org/10.1145/2804371.2804379
_version_ 1676708300142411776
score 11,383075