Robustness of trait connections across environmental gradients and growth forms

Aim: Plant trait databases often contain traits that are correlated, but for whom direct (undirected statistical dependency) and indirect (mediated by other traits) connections may be confounded. The confounding of correlation and connection hinders our understanding of plant strategies, and how the...

Descripción completa

Detalles Bibliográficos
Autores Principales: Flores-Moreno H., Fazayeli F., Banerjee A., Datta A., Kattge J., Butler E.E., Atkin O.K., Wythers K., Chen M., Anand M., Bahn M., Byun C., Cornelissen J.H.C., Craine J., Gonzalez-Melo A., Hattingh W.N., Jansen S., Kraft N.J.B., Kramer K., Laughlin D.C., Minden V., Niinemets Ü., Onipchenko V., Peñuelas J., Soudzilovskaia N.A., Dalrymple R.L., Reich P.B.
Formato: Artículo (Article)
Lenguaje:Inglés (English)
Publicado: Blackwell Publishing Ltd 2019
Materias:
Acceso en línea:https://repository.urosario.edu.co/handle/10336/24164
https://doi.org/10.1111/geb.12996
id ir-10336-24164
recordtype dspace
spelling ir-10336-241642022-05-02T12:37:21Z Robustness of trait connections across environmental gradients and growth forms Flores-Moreno H. Fazayeli F. Banerjee A. Datta A. Kattge J. Butler E.E. Atkin O.K. Wythers K. Chen M. Anand M. Bahn M. Byun C. Cornelissen J.H.C. Craine J. Gonzalez-Melo A. Hattingh W.N. Jansen S. Kraft N.J.B. Kramer K. Laughlin D.C. Minden V. Niinemets Ü. Onipchenko V. Peñuelas J. Soudzilovskaia N.A. Dalrymple R.L. Reich P.B. Competition (ecology) Environmental gradient Functional response Growth form Leaf morphology Reproductive strategy Seed Embryophyta Leaf traits Plant functional traits Plant strategy integration Seed traits Stem traits Trait interdependence Trait networks Aim: Plant trait databases often contain traits that are correlated, but for whom direct (undirected statistical dependency) and indirect (mediated by other traits) connections may be confounded. The confounding of correlation and connection hinders our understanding of plant strategies, and how these vary among growth forms and climate zones. We identified the direct and indirect connections across plant traits relevant to competition, resource acquisition and reproductive strategies using a global database and explored whether connections within and between traits from different tissue types vary across climates and growth forms. Location: Global. Major taxa studied: Plants. Time period: Present. Methods: We used probabilistic graphical models and a database of 10 plant traits (leaf area, specific leaf area, mass- and area-based leaf nitrogen and phosphorous content, leaf life span, plant height, stem specific density and seed mass) with 16,281 records to describe direct and indirect connections across woody and non-woody plants across tropical, temperate, arid, cold and polar regions. Results: Trait networks based on direct connections are sparser than those based on correlations. Land plants had high connectivity across traits within and between tissue types; leaf life span and stem specific density shared direct connections with all other traits. For both growth forms, two groups of traits form modules of more highly connected traits; one related to resource acquisition, the other to plant architecture and reproduction. Woody species had higher trait network modularity in polar compared to temperate and tropical climates, while non-woody species did not show significant differences in modularity across climate regions. Main conclusions: Plant traits are highly connected both within and across tissue types, yet traits segregate into persistent modules of traits. Variation in the modularity of trait networks suggests that trait connectivity is shaped by prevailing environmental conditions and demonstrates that plants of different growth forms use alternative strategies to cope with local conditions. © 2019 John Wiley and Sons Ltd 2019 2020-05-26T00:09:36Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 1466822X https://repository.urosario.edu.co/handle/10336/24164 https://doi.org/10.1111/geb.12996 eng info:eu-repo/semantics/openAccess application/pdf Blackwell Publishing Ltd instname:Universidad del Rosario
institution EdocUR - Universidad del Rosario
collection DSpace
language Inglés (English)
topic Competition (ecology)
Environmental gradient
Functional response
Growth form
Leaf morphology
Reproductive strategy
Seed
Embryophyta
Leaf traits
Plant functional traits
Plant strategy integration
Seed traits
Stem traits
Trait interdependence
Trait networks
spellingShingle Competition (ecology)
Environmental gradient
Functional response
Growth form
Leaf morphology
Reproductive strategy
Seed
Embryophyta
Leaf traits
Plant functional traits
Plant strategy integration
Seed traits
Stem traits
Trait interdependence
Trait networks
Flores-Moreno H.
Fazayeli F.
Banerjee A.
Datta A.
Kattge J.
Butler E.E.
Atkin O.K.
Wythers K.
Chen M.
Anand M.
Bahn M.
Byun C.
Cornelissen J.H.C.
Craine J.
Gonzalez-Melo A.
Hattingh W.N.
Jansen S.
Kraft N.J.B.
Kramer K.
Laughlin D.C.
Minden V.
Niinemets Ü.
Onipchenko V.
Peñuelas J.
Soudzilovskaia N.A.
Dalrymple R.L.
Reich P.B.
Robustness of trait connections across environmental gradients and growth forms
description Aim: Plant trait databases often contain traits that are correlated, but for whom direct (undirected statistical dependency) and indirect (mediated by other traits) connections may be confounded. The confounding of correlation and connection hinders our understanding of plant strategies, and how these vary among growth forms and climate zones. We identified the direct and indirect connections across plant traits relevant to competition, resource acquisition and reproductive strategies using a global database and explored whether connections within and between traits from different tissue types vary across climates and growth forms. Location: Global. Major taxa studied: Plants. Time period: Present. Methods: We used probabilistic graphical models and a database of 10 plant traits (leaf area, specific leaf area, mass- and area-based leaf nitrogen and phosphorous content, leaf life span, plant height, stem specific density and seed mass) with 16,281 records to describe direct and indirect connections across woody and non-woody plants across tropical, temperate, arid, cold and polar regions. Results: Trait networks based on direct connections are sparser than those based on correlations. Land plants had high connectivity across traits within and between tissue types; leaf life span and stem specific density shared direct connections with all other traits. For both growth forms, two groups of traits form modules of more highly connected traits; one related to resource acquisition, the other to plant architecture and reproduction. Woody species had higher trait network modularity in polar compared to temperate and tropical climates, while non-woody species did not show significant differences in modularity across climate regions. Main conclusions: Plant traits are highly connected both within and across tissue types, yet traits segregate into persistent modules of traits. Variation in the modularity of trait networks suggests that trait connectivity is shaped by prevailing environmental conditions and demonstrates that plants of different growth forms use alternative strategies to cope with local conditions. © 2019 John Wiley and Sons Ltd
format Artículo (Article)
author Flores-Moreno H.
Fazayeli F.
Banerjee A.
Datta A.
Kattge J.
Butler E.E.
Atkin O.K.
Wythers K.
Chen M.
Anand M.
Bahn M.
Byun C.
Cornelissen J.H.C.
Craine J.
Gonzalez-Melo A.
Hattingh W.N.
Jansen S.
Kraft N.J.B.
Kramer K.
Laughlin D.C.
Minden V.
Niinemets Ü.
Onipchenko V.
Peñuelas J.
Soudzilovskaia N.A.
Dalrymple R.L.
Reich P.B.
author_facet Flores-Moreno H.
Fazayeli F.
Banerjee A.
Datta A.
Kattge J.
Butler E.E.
Atkin O.K.
Wythers K.
Chen M.
Anand M.
Bahn M.
Byun C.
Cornelissen J.H.C.
Craine J.
Gonzalez-Melo A.
Hattingh W.N.
Jansen S.
Kraft N.J.B.
Kramer K.
Laughlin D.C.
Minden V.
Niinemets Ü.
Onipchenko V.
Peñuelas J.
Soudzilovskaia N.A.
Dalrymple R.L.
Reich P.B.
author_sort Flores-Moreno H.
title Robustness of trait connections across environmental gradients and growth forms
title_short Robustness of trait connections across environmental gradients and growth forms
title_full Robustness of trait connections across environmental gradients and growth forms
title_fullStr Robustness of trait connections across environmental gradients and growth forms
title_full_unstemmed Robustness of trait connections across environmental gradients and growth forms
title_sort robustness of trait connections across environmental gradients and growth forms
publisher Blackwell Publishing Ltd
publishDate 2019
url https://repository.urosario.edu.co/handle/10336/24164
https://doi.org/10.1111/geb.12996
_version_ 1740172387020701696
score 12,131701