The perils of misusing remote sensing data: The case of forest cover
Research on deforestation has grown exponentially due to the availability of satellite-based measures of forest cover. One of the most popular is Global Forest Change (GFC). Using GFC, we estimate that the Colombian civil conflict increases ‘forest cover’. Using an alternative source that validates...
Autores Principales: | , , |
---|---|
Otros Autores: | |
Formato: | Documento de trabajo (Working Paper) |
Lenguaje: | Español (Spanish) |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://repository.urosario.edu.co/handle/10336/21919 |
id |
ir-10336-21919 |
---|---|
recordtype |
dspace |
institution |
EdocUR - Universidad del Rosario |
collection |
DSpace |
language |
Español (Spanish) |
topic |
Economía de la tierra Educación, investigación, temas relacionados Forest Cover Conflict Measurement D74 Q23 Q34 |
spellingShingle |
Economía de la tierra Educación, investigación, temas relacionados Forest Cover Conflict Measurement D74 Q23 Q34 Fergusson, Leopoldo Saavedra, Santiago Vargas, Juan F. The perils of misusing remote sensing data: The case of forest cover |
description |
Research on deforestation has grown exponentially due to the availability of satellite-based measures of forest cover. One of the most popular is Global Forest Change (GFC). Using GFC, we estimate that the Colombian civil conflict increases ‘forest cover’. Using an alternative source that validates the same remote sensing images in the ground, we find the opposite effect. This occurs because, in spite of its name, GFC measures tree cover, including vegetation other than native forest. Most users of GFC seem unaware of this. In our case, most of the conflicting results are explained by GFC’s misclassification of oil palm crops as ‘forest’. Our findings call for caution when using automated classification of imagery for specific research questions. |
author2 |
Grupo de Investigaciones. Facultad de Economía. Universidad del Rosario |
author_facet |
Grupo de Investigaciones. Facultad de Economía. Universidad del Rosario Fergusson, Leopoldo Saavedra, Santiago Vargas, Juan F. |
format |
Documento de trabajo (Working Paper) |
author |
Fergusson, Leopoldo Saavedra, Santiago Vargas, Juan F. |
author_sort |
Fergusson, Leopoldo |
title |
The perils of misusing remote sensing data: The case of forest cover |
title_short |
The perils of misusing remote sensing data: The case of forest cover |
title_full |
The perils of misusing remote sensing data: The case of forest cover |
title_fullStr |
The perils of misusing remote sensing data: The case of forest cover |
title_full_unstemmed |
The perils of misusing remote sensing data: The case of forest cover |
title_sort |
perils of misusing remote sensing data: the case of forest cover |
publishDate |
2020 |
url |
https://repository.urosario.edu.co/handle/10336/21919 |
_version_ |
1696284763967455232 |
spelling |
ir-10336-219192021-04-05T01:42:56Z The perils of misusing remote sensing data: The case of forest cover Fergusson, Leopoldo Saavedra, Santiago Vargas, Juan F. Grupo de Investigaciones. Facultad de Economía. Universidad del Rosario Economía de la tierra Educación, investigación, temas relacionados Forest Cover Conflict Measurement D74 Q23 Q34 Research on deforestation has grown exponentially due to the availability of satellite-based measures of forest cover. One of the most popular is Global Forest Change (GFC). Using GFC, we estimate that the Colombian civil conflict increases ‘forest cover’. Using an alternative source that validates the same remote sensing images in the ground, we find the opposite effect. This occurs because, in spite of its name, GFC measures tree cover, including vegetation other than native forest. Most users of GFC seem unaware of this. In our case, most of the conflicting results are explained by GFC’s misclassification of oil palm crops as ‘forest’. Our findings call for caution when using automated classification of imagery for specific research questions. 2020-05-06 2020-05-08T19:09:56Z info:eu-repo/semantics/workingPaper info:eu-repo/semantics/draft Fergusson, Leopoldo; Saavedra, Santiago; Vargas, Juan F. (2020) The perils of misusing remote sensing data: The case of forest cover. Bogota : Universidad del Rosario, Department of Economics, Bogota. Documentos de trabajo economía. 21 pp. https://repository.urosario.edu.co/handle/10336/21919 spa info:eu-repo/semantics/openAccess application/pdf reponame:Repositorio Institucional EdocUR instname:Universidad del Rosario Alix-Garcia, J. M., Sims, K. R., & Yanez-Pagans, P. (2015). Only one tree from each ˜ seed? environmental effectiveness and poverty alleviation in mexico’s payments for ecosystem services program. American Economic Journal: Economic Policy, 7(4), 1–40. Berazneva, J., & Byker, T. S. (2017). Does forest loss increase human disease? evidence from nigeria. American Economic Review, 107(5), 516–21. Blackman, A., Goff, L., & Planter, M. R. (2018). Does eco-certification stem tropical deforestation? forest stewardship council certification in mexico. Journal of Environmental Economics and Management, 89, 306–333. Chervier, C., & Costedoat, S. (2017). Heterogeneous impact of a collective payment for environmental services scheme on reducing deforestation in cambodia. World Development, 98, 148–159. Cook, N. J., Wright, G. D., & Andersson, K. P. (2017). Local politics of forest governance: why ngo support can reduce local government responsiveness. World Development, 92, 203–214. Damania, R., Russ, J., Wheeler, D., & Barra, A. F. (2018). The road to growth: Measuring the tradeoffs between economic growth and ecological destruction. World Development, 101, 351–376. de Souza Cunha, F. A. F., Borner, J., Wunder, S., Cosenza, C. A. N., & Lucena, A. F. ¨ (2016). The implementation costs of forest conservation policies in brazil. Ecological economics, 130, 209–220. Galindo, G., Espejo, O., Rubiano, J., Vergara, L., & Cabrera, E. (2014). Protocolo de procesamiento digital de imagenes para la cuantificacion de la deforestacion en colombia. V2. 0. IDEAM, Bogota. Gallemore, C., & Jespersen, K. (2016). Transnational markets for sustainable development governance: The case of redd+. World Development, 86, 79–94. Gibson, J. (2018). Forest loss and economic inequality in the solomon islands: using small-area estimation to link environmental change to welfare outcomes. Ecological economics, 148, 66–76. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., . . . Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. Retrieved from http://science .sciencemag.org/content/342/6160/850 Jung, S., & Polasky, S. (2018). Partnerships to prevent deforestation in the amazon. Journal of Environmental Economics and Management, 92, 498–516. Kou, W., Xiao, X., Dong, J., Gan, S., Zhai, D., Zhang, G., . . . Li, L. (2015). Mapping deciduous rubber plantation areas and stand ages with palsar and landsat images. Remote Sensing, 7(1), 1048–1073. Restrepo, J., Spagat, M., & Vargas, J. (2004). The dynamics of the columbian civil conflict: A new dataset. Homo Oeconomicus, 21, 396–429. Richards, P. (2017). It’s not just where you farm; it’s whether your neighbor does too. how agglomeration economies are shaping new agricultural landscapes. Journal of Economic Geography, 18(1), 87–110. Song, X.-P. (2018). Global estimates of ecosystem service value and change: Taking into account uncertainties in satellite-based land cover data. Ecological Economics, 143, 227–235. Taki, H., Yamaura, Y., Okabe, K., & Maeto, K. (2011). Plantation vs. natural forest: Matrix quality determines pollinator abundance in crop fields. Scientific Reports, 1, 132. Tropek, R., Sedlacek, O., Beck, J., Keil, P., Musilov ´ a, Z., S ´ ´ımova, I., & Storch, D. (2014). ´ Comment on “high-resolution global maps of 21st-century forest cover change”. Science, 344(6187), 981. |
score |
12,111491 |