Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)

Larval therapy (LT) is an alternative treatment which uses fly larvae to heal chronic wounds; its action is based on debridement, bacterial removal and stimulating granulation tissue. The most important mechanism for fighting infection with LT depends on larval excretions and secretions (ES). The la...

Descripción completa

Detalles Bibliográficos
Autor Principal: Díaz Roa, Andrea
Otros Autores: Bello García, Felio Jesús
Formato: Tesis de doctorado (Doctoral Thesis)
Lenguaje:Inglés (English)
Publicado: Universidad del Rosario 2019
Materias:
Acceso en línea:https://repository.urosario.edu.co/handle/10336/20460
id ir-10336-20460
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Inglés (English)
topic Antimicrobial peptide
Larval therapy
Sarconesiopsis magellanica
Ciencias médicas, Medicina
Medicina
Peptidos
spellingShingle Antimicrobial peptide
Larval therapy
Sarconesiopsis magellanica
Ciencias médicas, Medicina
Medicina
Peptidos
Díaz Roa, Andrea
Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)
description Larval therapy (LT) is an alternative treatment which uses fly larvae to heal chronic wounds; its action is based on debridement, bacterial removal and stimulating granulation tissue. The most important mechanism for fighting infection with LT depends on larval excretions and secretions (ES). The larvae are protected by an antimicrobial peptide (1) spectrum. Sarconesiopsis magellanica is a promising necrophagous fly for use in medicine. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES, for the first time. ES were fractionated by RP-HPLC using C18 columns. The products were lyophilized, and their antimicrobial activity characterized. The sequences were determined by mass spectrometry. The mechanism of action was evaluated by fluorescence and electronic microscopy. Toxicity was tested on HeLA cells and human erythrocytes; the physicochemical properties of the identified peptides were evaluated. Two molecules in the ES were characterized: sarconesin (a new peptide having antibacterial activity against Gram-negative (Escherichia coli D31, Pseudomonas aeruginosa 27853) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria and sarconsesin II, having activity against Gram-negative (E. coli MG1655, P. aeruginosa ATCC 27853) and Gram-positive (S. aureus ATCC 29213, M. luteus A270) bacteria. The minimum inhibitory concentrations ranged from 1.2 μM upwards; the AMPs did not have toxicity in any tested cells and their action on bacterial membrane and DNA was confirmed. Sarconesin had similarity with the CDC42 protein belonging to the Rho-family of GTPases which are important in organelle development and wound repair. Sarconesin II was seen to be a conserved domain of the ATP synthase protein belonging to the FliI superfamily. The data reported here indicates that the peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive microorganisms and as new resources to combat resistance against antimicrobial agents.
author2 Bello García, Felio Jesús
author_facet Bello García, Felio Jesús
Díaz Roa, Andrea
format Tesis de doctorado (Doctoral Thesis)
author Díaz Roa, Andrea
author_sort Díaz Roa, Andrea
title Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)
title_short Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)
title_full Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)
title_fullStr Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)
title_full_unstemmed Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)
title_sort isolating and characterizing antimicrobial peptides derived from larvae of the blowfly sarconesiopsis magellanica (diptera: calliphoridae)
publisher Universidad del Rosario
publishDate 2019
url https://repository.urosario.edu.co/handle/10336/20460
_version_ 1651341313616904192
spelling ir-10336-204602019-10-29T18:08:06Z Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae) Díaz Roa, Andrea Bello García, Felio Jesús da Silva Junior, Pedro Ismael Patarroyo, Manuel A. Antimicrobial peptide Larval therapy Sarconesiopsis magellanica Ciencias médicas, Medicina Medicina Peptidos Larval therapy (LT) is an alternative treatment which uses fly larvae to heal chronic wounds; its action is based on debridement, bacterial removal and stimulating granulation tissue. The most important mechanism for fighting infection with LT depends on larval excretions and secretions (ES). The larvae are protected by an antimicrobial peptide (1) spectrum. Sarconesiopsis magellanica is a promising necrophagous fly for use in medicine. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES, for the first time. ES were fractionated by RP-HPLC using C18 columns. The products were lyophilized, and their antimicrobial activity characterized. The sequences were determined by mass spectrometry. The mechanism of action was evaluated by fluorescence and electronic microscopy. Toxicity was tested on HeLA cells and human erythrocytes; the physicochemical properties of the identified peptides were evaluated. Two molecules in the ES were characterized: sarconesin (a new peptide having antibacterial activity against Gram-negative (Escherichia coli D31, Pseudomonas aeruginosa 27853) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria and sarconsesin II, having activity against Gram-negative (E. coli MG1655, P. aeruginosa ATCC 27853) and Gram-positive (S. aureus ATCC 29213, M. luteus A270) bacteria. The minimum inhibitory concentrations ranged from 1.2 μM upwards; the AMPs did not have toxicity in any tested cells and their action on bacterial membrane and DNA was confirmed. Sarconesin had similarity with the CDC42 protein belonging to the Rho-family of GTPases which are important in organelle development and wound repair. Sarconesin II was seen to be a conserved domain of the ATP synthase protein belonging to the FliI superfamily. The data reported here indicates that the peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive microorganisms and as new resources to combat resistance against antimicrobial agents. Colciencias Butantan Institute 2019-08-28 2019-10-18T16:50:35Z info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion https://repository.urosario.edu.co/handle/10336/20460 eng info:eu-repo/semantics/openAccess application/pdf Universidad del Rosario Doctorado en Ciencias Biomédicas y Biológicas Facultad de Ciencias Naturales y Matemáticas instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR 1. Classamp. 2019 [March 7th 2019]. Available from: http://www.bicnirrh.res.in/classamp/predict.php. 2. Nigam Y, Dudley E, Bexfield A, Bond AE, Evans J, James J. The Physiology of Wound Healing by the Medicinal Maggot, Lucilia sericata. In: Simpson SJ, editor. Advances in Insect Physiology, Vol 39. Advances in Insect Physiology. 39. London: Academic Press Ltd-Elsevier Science Ltd; 2010. p. 39-81. 3. Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect. 2004;6(14):1297-304. 4. Mumcuoglu KY. Clinical applications for maggots in wound care. American journal of clinical dermatology. 2001;2(4):219-27. 5. Robinson W. Stimulation of healing in non-healing wounds: By Allantoin Occurring in Maggot Secretions and of Wide Biological Distribution. The Journal of Bone & Joint Surgery JBJS. 1935;17(2):267-71. 6. Gottrup F, Jorgensen B. Maggot debridement: an alternative method for debridement. Eplasty. 2011;11:e33. 7. Cazander G, van Veen KE, Bernards AT, Jukema GN. Do maggots have an influence on bacterial growth? A study on the susceptibility of strains of six different bacterial species to maggots of Lucilia sericata and their excretions/secretions. J Tissue Viability. 2009;18(3):80-7. 8. van der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The Journal of antimicrobial chemotherapy. 2008;61(1):117-22. 9. Church JC. The traditional use of maggots in wound healing, and the development of larva therapy (biosurgery) in modern medicine. J Altern Complement Med. 1996;2(4):525-7. 10. Thomas AM, Harding KG, Moore K. The structure and composition of chronic wound eschar. Journal of wound care. 1999;8(6):285-7. 11. Sherman RA, Hall MJ, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annual review of entomology. 2000;45:55-81. 12. Wolff H, Hansson C. Rearing larvae of Lucilia sericata for chronic ulcer treatment--an improved method. Acta dermato-venereologica. 2005;85(2):126-31. 13. Spilsbury K, Cullum N, Dumville J, O'Meara S, Petherick E, Thompson C. Exploring patient perceptions of larval therapy as a potential treatment for venous leg ulceration. Health expectations : an international journal of public participation in health care and health policy. 2008;11(2):148-59. 14. Baer WS. The treatment of chronic osteomyelitis with the maggot (larva of the Blowfly). J Bone Joint Surg. 1931;13:438-75. 15. Robinson W, Norwood VH. The role of surgical maggots in the disinfection of osteomyelitis and other infected wounds. J Bone Joint Surg Am. 1933;15:409-12. 16. Weil GC, Simon RJ, Sweadner WR. A biological, bacteriological and clinical study of larval or maggot therapy in the treatment of acute and chronic pyogenic infections. Am J Surg. 1933;19(1):36-48. 17. Kerridge A, Lappin-Scott H, Stevens JR. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Medical and veterinary entomology. 2005;19(3):333-7. 18. Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. BioEssays : news and reviews in molecular, cellular and developmental biology. 2013;35(12):1083-92. 19. Hardy MA. The biology of scar formation. Physical therapy. 1989;69(12):1014-24. 20. Morgan C, Nigam Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis. 2013;16(3):493-502. 21. Nigam Y, Bexfield A, Thomas S, Ratcliffe NA. Maggot therapy: the science and implication for CAM part II-maggots combat infection. Evidence-based complementary and alternative medicine : eCAM. 2006;3(3):303-8. 22. Alexiadou K, Doupis J. Management of diabetic foot ulcers. Diabetes therapy : research, treatment and education of diabetes and related disorders. 2012;3(1):4-. 23. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clinical microbiology reviews. 2001;14(2):244-69. 24. Jaklic D, Lapanje A, Zupancic K, Smrke D, Gunde-Cimerman N. Selective antimicrobial activity of maggots against pathogenic bacteria. Journal of medical microbiology. 2008;57(Pt 5):617-25. 25. Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, et al. Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol. 2003;148(1):14-23. 26. Prete PE. Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life sciences. 1997;60(8):505-10. 27. Telford G, Brown AP, Seabra RA, Horobin AJ, Rich A, English JS, et al. Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from Lucilia sericata. Br J Dermatol. 2010;163(3):523-31. 28. van der Plas MJ, van Dissel JT, Nibbering PH. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PloS one. 2009;4(11):e8071. 29. Thomas S, Wynn K, Fowler T, Jones M. The effect of containment on the properties of sterile maggots. British journal of nursing (Mark Allen Publishing). 2002;11(12 Suppl):S21-2, S4, S6 passim. 30. Young AR, Meeusen EN, Bowles VM. Characterization of ES products involved in wound initiation by Lucilia cuprina larvae. Int J Parasitol. 1996;26(3):245-52. 31. Giglioti R, Guimarães S, C.G. Oliveira-Sequeira T, David E, Brito L, Funes-Huacca M, et al. Proteolytic activity of excretory/secretory products of Cochliomyia hominivorax larvae (Diptera: Calliphoridae)2016. 711-8 p. 32. Muharsini S, Sukarsih, Riding G, Partoutomo S, Hamilton S, Willadsen P, et al. Identification and characterisation of the excreted/secreted serine proteases of larvae of the Old World Screwworm Fly, Chrysomya bezziana. International Journal for Parasitology. 2000;30(6):705-14. 33. Schmidtchen A, Wolff H, Rydengard V, Hansson C. Detection of serine proteases secreted by Lucilia sericata in vitro and during treatment of a chronic leg ulcer. Acta dermato-venereologica. 2003;83(4):310-1. 34. Buchman J, Blair JE. Maggots and their use in the treatment of chronic osteomyelitis1932. 177-90 p. 35. Wollina U, Liebold K, Schmidt WD, Hartmann M, Fassler D. Biosurgery supports granulation and debridement in chronic wounds--clinical data and remittance spectroscopy measurement. International journal of dermatology. 2002;41(10):635-9. 36. Robinson W. Stimulation of healing in non-healing wounds by allantoin in maggot secretions and of wide biological distribution. J Bone Joint Surg Am. 1935;17(2):267-71. 37. Harris LG, Nigam Y, Sawyer J, Mack D, Pritchard DI. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Applied and environmental microbiology. 2013;79(4):1393-5. 38. Horobin AJ, Shakesheff KM, Woodrow S, Robinson C, Pritchard DI. Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon interactions between human dermal fibroblasts and extracellular matrix components. Br J Dermatol. 2003;148(5):923-33. 39. Simmons SW. A Bactericidal Principle in Excretions of Surgical Maggots which Destroys Important Etiological Agents of Pyogenic Infections. Journal of bacteriology. 1935;30(3):253-67. 40. Pavillard ER, Wright EA. An antibiotic from maggots. Nature. 1957;180(4592):916-7. 41. Parnes A, Lagan KM. Larval therapy in wound management: a review. International journal of clinical practice. 2007;61(3):488-93. 42. Huberman L, Gollop N, Mumcuoglu KY, Breuer E, Bhusare SR, Shai Y, et al. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Medical and veterinary entomology. 2007;21(2):127-31. 43. Hoffmann JA, Hetru C. Insect defensins: inducible antibacterial peptides. Immunology today. 1992;13(10):411-5. 44. Bulet P, Stocklin R. Insect antimicrobial peptides: structures, properties and gene regulation. Protein and peptide letters. 2005;12(1):3-11. 45. Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cellular and molecular life sciences : CMLS. 2010;67(3):455-66. 46. Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, et al. The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect. 2008;10(4):325-33. 47. Arora S, Baptista C, Lim CS. Maggot metabolites and their combinatory effects with antibiotic on Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2011;10:6. 48. Daeschlein G, Mumcuoglu KY, Assadian O, Hoffmeister B, Kramer A. In vitro antibacterial activity of Lucilia sericata maggot secretions. Skin pharmacology and physiology. 2007;20(2):112-5. 49. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother. 2010;65(8):1646-54. 50. El Shazely B, Veverka V, Fucik V, Voburka Z, Zdarek J, Cerovsky V. Lucifensin II, a defensin of medicinal maggots of the blowfly Lucilia cuprina (Diptera: Calliphoridae). Journal of medical entomology. 2013;50(3):571-8. 51. Chernysh S, Gordya N, Suborova T. Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria. PloS one. 2015;10(7):e0130788. 52. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. The Journal of antimicrobial chemotherapy. 2010;65(8):1646-54. 53. Cerovsky V, Bem R. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy. Pharmaceuticals. 2014;7(3):251-64. 54. Yakovlev AY, Nesin AP, Simonenko NP, Gordya NA, Tulin DV, Kruglikova AA, et al. Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae. In vitro cellular & developmental biology Animal. 2017;53(1):33-42. 55. Gordya N, Yakovlev A, Kruglikova A, Tulin D, Potolitsina E, Suborova T, et al. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PloS one. 2017;12(3):e0173559. 56. Chernysh S, Gordya N, Tulin D, Yakovlev A. Biofilm infections between Scylla and Charybdis: interplay of host antimicrobial peptides and antibiotics. Infect Drug Resist. 2018;11:501-14. 57. Cowan LJ, Stechmiller JK, Phillips P, Yang Q, Schultz G. Chronic Wounds, Biofilms and Use of Medicinal Larvae. Ulcers. 2013;2013:7. 58. Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008;16(1):23-9. 59. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008;16(1):37-44. 60. Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years?(*). International wound journal. 2012;9 Suppl 2:1-19. 61. Harris LG, Bexfield A, Nigam Y, Rohde H, Ratcliffe NA, Mack D. Disruption of Staphylococcus epidermidis biofilms by medicinal maggot Lucilia sericata excretions/secretions. The International journal of artificial organs. 2009;32(9):555-64. 62. Cazander G, van de Veerdonk MC, Vandenbroucke-Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res. 2010;468(10):2789-96. 63. van der Plas MJ, Dambrot C, Dogterom-Ballering HC, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. The Journal of antimicrobial chemotherapy. 2010;65(5):917-23. 64. Pritchard DI, Brown AP. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity. International wound journal. 2015;12(4):414-21. 65. Jiang K-c, Sun X-j, Wang W, Liu L, Cai Y, Chen Y-c, et al. Excretions/Secretions from Bacteria-Pretreated Maggot Are More Effective against Pseudomonas aeruginosa Biofilms. PloS one. 2012;7(11):e49815. 66. Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Medical and veterinary entomology. 2010;24(4):375-81. 67. Dumville JC, Worthy G, Soares MO, Bland JM, Cullum N, Dowson C, et al. VenUS II: a randomised controlled trial of larval therapy in the management of leg ulcers. Health technology assessment. 2009;13(55):1-182, iii-iv. 68. Mariluis J, Mulieri P. The distribution of the Calliphoridae in Argentina (Diptera). Revista de la Sociedad Entomológica Argentina. 2003;62(1):85 - 97. 69. Pape T, Wolff M, Amat E. Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae y Sarcophagidae) de Colombia. Biota Colombiana. 2004;5:201 - 8. 70. Figueroa-Roa L, Linhares AX. Sinantropia de los Calliphoridae (Diptera) de Valdívia, Chile. Neotropical entomology. 2002;31:233-9. 71. Mariluis JC, Peris SV. Datos para una sinopsis de los Calliphoridae neotropicales. EOS– Revista Española de Entomología. 1984;40:67–86. 72. James M. Catalogue of the diptera of the Americas South of United States, Sao Paulo, Museu de Zoologia da USP. Secretaria da Agricultura. Departamento de Zoologia.: S.N.; 1970. 88 p. 73. Goff ML. A fly for the prosecution: how insect evidence helps solve crimes. Harvard University Press. 2001:225. 74. Segura NA, Usaquen W, Sanchez MC, Chuaire L, Bello F. Succession pattern of cadaverous entomofauna in a semi-rural area of Bogota, Colombia. Forensic science international. 2009;187(1-3):66-72. 75. Segura N, Usaquén W, Sánchez M, Sánchez R, Chuaire L, Camacho G, et al. Curvas de crecimiento y desarrollo de los primeros insectos colonizadores (Diptera: Calliphoridae) sobre cadáveres de cerdo Sus scrofa en Bogotá (Colombia). Revista de Investigación Universidad de La Salle 2005;5:129 - 40. 76. Diaz-Roa A, Gaona MA, Segura NA, Suarez D, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity. Acta tropica. 2014;136:37-43. 77. Cruz-Saavedra L, Diaz-Roa A, Gaona MA, Cruz ML, Ayala M, Cortes-Vecino JA, et al. The effect of Lucilia sericata- and Sarconesiopsis magellanica-derived larval therapy on Leishmania panamensis. Acta Trop. 2016;164:280-9. 78. Kuhn-Nentwig L, Nentwig W. The Immune System of Spiders. 2013. p. 81-91. 79. Vieira CS, Waniek PJ, Mattos DP, Castro DP, Mello CB, Ratcliffe NA, et al. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasites & vectors. 2014;7:232. 80. Wirkner C, Huckstorf K. The Circulatory System of Spiders. 2013. p. 15-27. 81. Lackie AM. Immune mechanisms in insects. Parasitology today. 1988;4(4):98-105. 82. Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect biochemistry and molecular biology. 2002;32(10):1295-309. 83. Brooks GT. Comprehensive insect physiology, biochemistry and pharmacology: Edited by G. A. Kerkut and L. I. Gilbert. Pergamon Press, Oxford. 1985. 13 Volumes. 8200 pp approx. £1700.00/$2750.00. ISBN 0 08 026850 1. Insect Biochemistry. 1985;15(5):i-xiv. 84. Ratcliffe NA, Gagen SJ. Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue & cell. 1977;9(1):73-85. 85. Satyavathi VV, Minz A, Nagaraju J. Nodulation: an unexplored cellular defense mechanism in insects. Cellular signalling. 2014;26(8):1753-63. 86. Aguilar-Díaz H, Cossío-Bayúgar R. Immune System and Its Relationships with Pathogens: Structure, Physiology, and Molecular Biology. 2018. 87. Ratcliffe NA, Rowley AF. Cellular defense reactions of insect hemocytes in vitro: Phagocytosis in a new suspension culture system. Journal of Invertebrate Pathology. 1975;26(2):225-33. 88. Ratcliffe NA, Götz P. Functional studies on insect haemocytes, including non-self recognition. Research in Immunology. 1990;141(9):919-23. 89. Nappi AJ, Vass E, Frey F, Carton Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European journal of cell biology. 1995;68(4):450-6. 90. Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Annual review of entomology. 1997;42:611-43. 91. Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Current opinion in immunology. 1998;10(1):23-8. 92. Dunn PE. Humoral Immunity in Insects. BioScience. 1990;40(10):738-44. 93. Iwanaga S, Lee B. Recent Advances in the Innate Immunity of Invertebrate Animals2005. 128-50 p. 94. Binggeli O, Neyen C, Poidevin M, Lemaitre B. Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLOS Pathogens. 2014;10(5):e1004067. 95. Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, et al. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect biochemistry and molecular biology. 2004;34(1):29-41. 96. Gorman MJ, Wang Y, Jiang H, Kanost MR. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. The Journal of biological chemistry. 2007;282(16):11742-9. 97. Shrestha S, Kim Y. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect biochemistry and molecular biology. 2008;38(1):99-112. 98. Hillyer JF, Christensen BM. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and cell biology. 2002;117(5):431-40. 99. Rizki TM, Rizki RM, Bellotti RA. Genetics of a Drosophila phenoloxidase. Molecular & general genetics : MGG. 1985;201(1):7-13. 100. Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife. 2017;6:e25496. 101. Fujita AI. Lysozymes in insects: What role do they play in nitrogen metabolism?2004. 305-10 p. 102. Zdybicka-Barabas A, Staczek S, Mak P, Skrzypiec K, Mendyk E, Cytrynska M. Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochimica et biophysica acta. 2013;1828(6):1449-56. 103. Whitten M, Sun F, Tew I, Schaub G, Soukou C, Nappi A, et al. Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect biochemistry and molecular biology. 2007;37(5):440-52. 104. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism. 2003;27(4):277-84. 105. Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative medicine and cellular longevity. 2016;2016:3164734-. 106. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology. 1982;47(5):412-26. 107. Rivero A. Nitric oxide: an antiparasitic molecule of invertebrates. Trends in parasitology. 2006;22(5):219-25. 108. Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS pathogens. 2007;3(11):e173-e. 109. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nature reviews Immunology. 2014;14(12):796-810. 110. Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Developmental and comparative immunology. 2014;42(1):25-35. 111. Valanne S, Wang J-H, Rämet M. The &lt;em&gt;Drosophila&lt;/em&gt; Toll Signaling Pathway. The Journal of Immunology. 2011;186(2):649. 112. Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018;8(1). 113. Elhag O, Zhou D, Song Q, Soomro AA, Cai M, Zheng L, et al. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia illucens (L.). PloS one. 2017;12(1):e0169582. 114. Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2016;371(1695). 115. Zhang L, Wang YW, Lu ZQ. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori. Journal of Zhejiang University Science B. 2015;16(10):875-82. 116. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14(12):796-810. 117. Romoli O, Saviane A, Bozzato A, D'Antona P, Tettamanti G, Squartini A, et al. Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin. Scientific reports. 2017;7(1):1048. 118. Mishra AK, Choi J, Moon E, Baek KH. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules (Basel, Switzerland). 2018;23(4). 119. Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551-7. 120. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in biotechnology. 2011;29(9):464-72. 121. Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Applied microbiology and biotechnology. 2014;98(13):5807-22. 122. Manzo G, Ferguson PM, Gustilo VB, Hind CK, Clifford M, Bui TT, et al. Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Scientific reports. 2019;9(1):1385. 123. Minamino T, Kazetani K-i, Tahara A, Suzuki H, Furukawa Y, Kihara M, et al. Oligomerization of the Bacterial Flagellar ATPase FliI is Controlled by its Extreme N-terminal Region2006. 510-9 p. 124. Leon-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Perez JE, Garcia-Castaneda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212. Biomed Res Int. 2015;2015:453826. 125. Yazici A, Ortucu S, Taskin M, Marinelli L. Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Current topics in medicinal chemistry. 2018;18(24):2102-7. 126. Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic acids research. 2009;37(Database issue):D933-7. 127. Matsuyama K, Natori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. The Journal of biological chemistry. 1988;263(32):17112-6. 128. Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B, et al. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A. 1989;86(1):262-6. 129. Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends in parasitology. 2006;22(6):262-8. 130. Lehane MJ, Wu D, Lehane SM. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A. 1997;94(21):11502-7. 131. Rees JA, Moniatte M, Bulet P. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect biochemistry and molecular biology. 1997;27(5):413-22. 132. Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999;23(4-5):329-44. 133. Hanzawa H, Shimada I, Kuzuhara T, Komano H, Kohda D, Inagaki F, et al. 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS letters. 1990;269(2):413-20. 134. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995;3(5):435-48. 135. Landon C, Sodano P, Hetru C, Hoffmann J, Ptak M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein science : a publication of the Protein Society. 1997;6(9):1878-84. 136. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. The Journal of biological chemistry. 1990;265(19):11333-7. 137. Cerovsky V, Slaninova J, Fucik V, Monincova L, Bednarova L, Malon P, et al. Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chembiochem. 2011;12(9):1352-61. 138. Zhang Z, Wang J, Zhang B, Liu H, Song W, He J, et al. Activity of antibacterial protein from maggots against Staphylococcus aureus in vitro and in vivo. International journal of molecular medicine. 2013;31(5):1159-65. 139. Valachova I, Bohova J, Palosova Z, Takac P, Kozanek M, Majtan J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell and tissue research. 2013;353(1):165-71. 140. Valachova I, Prochazka E, Bohova J, Novak P, Takac P, Majtan J. Antibacterial properties of lucifensin in Lucilia sericata maggots after septic injury. Asian Pacific journal of tropical biomedicine. 2014;4(5):358-61. 141. Kruglikova A, Chernysh S. Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae). Entomol Rev. 2011;91:813-9. 142. Pinilla YT, Patarroyo MA, Velandia ML, Segura NA, Bello FJ. The effects of Sarconesiopsis magellanica larvae (Diptera: Calliphoridae) excretions and secretions on fibroblasts. Acta tropica. 2015;142:26-33. 143. Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? Evidence-based complementary and alternative medicine : eCAM. 2014;2014:592419. 144. Poppel AK, Vogel H, Wiesner J, Vilcinskas A. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrobial agents and chemotherapy. 2015;59(5):2508-14. 145. Yi H-Y, Chowdhury M, Huang Y-D, Yu X-Q. Insect antimicrobial peptides and their applications. Applied microbiology and biotechnology. 2014;98(13):5807-22. 146. Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Frontiers in chemistry. 2018;6:204-. 147. Aoki W, Ueda M. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals (Basel, Switzerland). 2013;6(8):1055-81. 148. Zhang L-j, Gallo RL. Antimicrobial peptides. Current Biology. 2016;26(1):R14-R9. 149. Leandro LF, Mendes CA, Casemiro LA, Vinholis AHC, Cunha WR, Almeida Rd, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. Anais da Academia Brasileira de Ciências. 2015;87:147-55. 150. Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. Journal of experimental botany. 2005;56(416):1685-95. 151. Findlay F, Proudfoot L, Stevens C, Barlow PG. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections. Pathogens and global health. 2016;110(4-5):137-47. 152. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18(1):24-30. 153. Bechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance. Journal of dental research. 2017;96(3):254-60. 154. Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers. 2005;80(6):717-35. 155. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews. 2003;55(1):27-55. 156. Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Current Medicinal Chemistry. 2006;2(1):2449-66. 157. Sani MA, Separovic F. How Membrane-Active Peptides Get into Lipid Membranes. Accounts of chemical research. 2016;49(6):1130-8. 158. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-95. 159. Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM. Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BioMed research international. 2014;2014:867381-. 160. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews Microbiology. 2005;3(3):238-50. 161. Lee MT, Chen FY, Huang HW. Energetics of pore formation induced by membrane active peptides. Biochemistry. 2004;43(12):3590-9. 162. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238-50. 163. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical journal. 2001;81(3):1475-85. 164. Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, et al. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophysical journal. 2001;81(4):2203-14. 165. Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996;35(35):11361-8. 166. Hallock KJ, Lee D-K, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophysical journal. 2003;84(5):3052-60. 167. Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS microbiology letters. 1998;160(1):91-6. 168. Otvos L, Jr. Antibacterial peptides and proteins with multiple cellular targets. Journal of peptide science : an official publication of the European Peptide Society. 2005;11(11):697-706. 169. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543-75. 170. Brogden KA, Ackermann M, McCray PB, Jr., Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003;22(5):465-78. 171. Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491-511. 172. Roudi R, Syn NL, Roudbary M. Antimicrobial Peptides As Biologic and Immunotherapeutic Agents against Cancer: A Comprehensive Overview. Frontiers in Immunology. 2017;8(1320). 173. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009;10(6):585-606. 174. Otvos L, Jr. Antibacterial peptides isolated from insects. Journal of peptide science : an official publication of the European Peptide Society. 2000;6(10):497-511. 175. Vilcinskas A. Anti-infective therapeutics from the Lepidopteran model host Galleria mellonella. Current pharmaceutical design. 2011;17(13):1240-5. 176. Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. Advances in biochemical engineering/biotechnology. 2013;135:157-92. 177. Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Applied microbiology and biotechnology. 2016;100(17):7397-405. 178. Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. The Journal of biological chemistry. 2005;280(13):12316-29. 179. Bhattacharjya S, Ramamoorthy A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. The FEBS journal. 2009;276(22):6465-73. 180. Marshall SH, Arenas G. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology2003. 181. WHO. 2018 [March 7th 2019]. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. 182. Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Current opinion in chemical biology. 2017;38:87-96. 183. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG. Antibiotics and antiseptics for venous leg ulcers. The Cochrane database of systematic reviews. 2010(1):CD003557. 184. Pinilla YT, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) life-cycle, reproductive and population parameters using different diets under laboratory conditions. Forensic science international. 2013;233(1-3):380-6. 185. Pinilla YT, Moreno-Perez DA, Patarroyo MA, Bello FJ. Proteolytic activity regarding Sarconesiopsis magellanica (Diptera: Calliphoridae) larval excretions and secretions. Acta tropica. 2013;128(3):686-91. 186. Cruz M, Bello FJ. Establishment and characterization of an embryonic cell line from Sarconesiopsis magellanica. Journal of insect science. 2013;13:130. 187. Cruz M, Bello F. Características de cultivos celulares primarios derivados de Sarconesiopsis magellanica (Le Guillou, 1842) (Diptera: Calliphoridae). Revista UDCA Actualidad & Divulgación Científica. 2012;15(2):313 - 21. 188. Diaz-Roa A, Gaona MA, Segura NA, Suarez D, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity. Acta Trop. 2014;136:37-43. 189. Góngora J, Díaz-Roa A, Gaona MA, Corts-Vecino J, Bello F. Evaluación de la actividad antibacterial de los extractos de cuerpos grasos y hemolinfa derivados de la mosca Sarconesiopsis magellanica (Diptera: Calliphoridae). Infectio. 2015;19:3-9. 190. Góngora J, Díaz-Roa A, Ramírez-Hernández A, Cortés-Vecino J, Gaona MA, Patarroyo MA, et al. Evaluating the effect of Sarconesiopsis magellanica (diptera: Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. Journal of diabetes research. 2015:270253. 191. Rueda LC, Ortega LG, Segura NA, Acero VM, Bello F. Lucilia sericata strain from Colombia: Experimental colonization, life tables and evaluation of two artificial diets of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogota, Colombia strain. Biological research. 2010;43(2):197-203. 192. Choi H, Aldrich JV. Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a peptide containing both tryptophan and arginine. Int J Pept Protein Res. 1993;42(1):58-63. 193. Riciluca KC, Sayegh RS, Melo RL, Silva PI, Jr. Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results in immunology. 2012;2:66-71. 194. Silva PI, Jr., Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. The Journal of biological chemistry. 2000;275(43):33464-70. 195. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918-20. 196. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551-67. 197. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10. 198. Jarnuczak AF, Lee DC, Lawless C, Holman SW, Eyers CE, Hubbard SJ. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics. Journal of proteome research. 2016;15(9):2945-59. 199. Eyers CE, Lawless C, Wedge DC, Lau KW, Gaskell SJ, Hubbard SJ. CONSeQuence: prediction of reference peptides for absolute quantitative proteomics using consensus machine learning approaches. Molecular & cellular proteomics : MCP. 2011;10(11):M110.003384. 200. Fusaro VA, Mani DR, Mesirov JP, Carr SA. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nature biotechnology. 2009;27(2):190-8. 201. Tang K, Smith RD. Physical/chemical separations in the break-up of highly charged droplets from electrosprays. Journal of the American Society for Mass Spectrometry. 2001;12(3):343-7. 202. Gucinski AC, Dodds ED, Li W, Wysocki VH. Understanding and exploiting Peptide fragment ion intensities using experimental and informatic approaches. Methods in molecular biology (Clifton, NJ). 2010;604:73-94. 203. Ghosh S, Challamalla P, Banji D. Negative ion mode mass spectrometry- an overview2012. 1462-71 p. 204. Raposio E, Bortolini S, Maistrello L, Grasso DA. Larval Therapy for Chronic Cutaneous Ulcers: Historical Review and Future Perspectives. Wounds : a compendium of clinical research and practice. 2017;29(12):367-73. 205. Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Developmental and comparative immunology. 1999;23(4-5):329-44. 206. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Current opinion in immunology. 2006;18(1):24-30. 207. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R. Antibiotics and antiseptics for venous leg ulcers. The Cochrane database of systematic reviews. 2014(1):Cd003557. 208. Various-authors. A Catalogue of the Diptera of the Americas south of the United States. Museu de Zoologia, Departamento de Zoologia, Universidade de São Paulo. São Paulo: Departamento de Zoologia, Secretaria da Agricultura do Estado de São Paulo; 1966. 209. Hou F, Li J, Pan P, Xu J, Liu L, Liu W, et al. Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. Int J Antimicrob Agents. 2011;38(6):510-5. 210. Merrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54. 211. Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985;82(15):5131-5. 212. Jiang Z, Vasil AI, Vasil ML, Hodges RS. "Specificity Determinants" Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals. 2014;7(4):366-91. 213. Bulet P. Strategies for the discovery, isolation, and characterization of natural bioactive peptides from the immune system of invertebrates. Methods in molecular biology (Clifton, NJ). 2008;494:9-29. 214. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008;3(2):163-75. 215. Hetru C, Bulet P. Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods in molecular biology (Clifton, NJ). 1997;78:35-49. 216. Lorenzini DM, da Silva PI, Jr., Fogaca AC, Bulet P, Daffre S. Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Developmental and comparative immunology. 2003;27(9):781-91. 217. Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Frontiers in microbiology. 2015;6:165. 218. Velema WA, van der Berg JP, Hansen MJ, Szymanski W, Driessen AJM, Feringa BL. Optical control of antibacterial activity. Nature Chemistry. 2013;5:924. 219. Sayegh RS, Batista IF, Melo RL, Riske KA, Daffre S, Montich G, et al. Longipin: An Amyloid Antimicrobial Peptide from the Harvestman Acutisoma longipes (Arachnida: Opiliones) with Preferential Affinity for Anionic Vesicles. PloS one. 2016;11(12). 220. NCBI. 2019 [March 7th 2019]. Available from: https://www.ncbi.nlm.nih.gov/protein/?term=. 221. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research. 1997;25(17):3389-402. 222. Gouy M, Guindon S, Gascuel O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution. 2010;27(2):221-4. 223. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111(20):E2100-E9. 224. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, et al. Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biological research. 2016;49(1):20. 225. Nocker A, Caspers M, Esveld-Amanatidou A, van der Vossen J, Schuren F, Montijn R, et al. Multiparameter viability assay for stress profiling applied to the food pathogen Listeria monocytogenes F2365. Applied and environmental microbiology. 2011;77(18):6433-40. 226. Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, et al. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Scientific reports. 2017;7(1):3392. 227. Carretero GPB, Saraiva GKV, Cauz ACG, Rodrigues MA, Kiyota S, Riske KA, et al. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide. Biochimica et biophysica acta. 2018;1860(8):1502-16. 228. Teng D, Wang X, Xi D, Mao R, Zhang Y, Guan Q, et al. A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377. Applied microbiology and biotechnology. 2014;98(19):8313-25. 229. Landry BS, Dextraze L, Boivin G. Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome. 1993;36(3):580-7. 230. Chaparro E, da Silva PIJ. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis. Int J Antimicrob Agents. 2016;48(3):277-85. 231. Nan YH, Bang J-K, Jacob B, Park I-S, Shin SY. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides. 2012;35(2):239-47. 232. Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, et al. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering2018. 599-607 p. 233. Torres MT, Pedron CN, da Silva Lima JA, da Silva PIJ, da Silva FD, Oliveira VXJ. Antimicrobial activity of leucine-substituted decoralin analogs with lower hemolytic activity. Journal of peptide science : an official publication of the European Peptide Society. 2017;23(11):818-23. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004;25(13):1605-12. Bochicchio B, Tamburro AM. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality. 2002;14(10):782-92. Berova NP, P.; Nakanishi, K.; Woody, R. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules2012. Fazio MA, Jouvensal L, Vovelle F, Bulet P, Miranda MT, Daffre S, et al. Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers. 2007;88(3):386-400. Cézard C, Silva-Pires V, Mullié C, Sonnet P. Antibacterial peptides: a review2011. 926-37 p. Giacometti A, Cirioni O, Barchiesi F, Fortuna M, Scalise G. In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. The Journal of antimicrobial chemotherapy. 1999;44(5):641-5. Chay Pak Ting BP, Mine Y, Juneja LR, Okubo T, Gauthier SF, Pouliot Y. Comparative composition and antioxidant activity of Peptide fractions obtained by ultrafiltration of egg yolk protein enzymatic hydrolysates. Membranes. 2011;1(3):149-61. Sandeman RM, Feehan JP, Chandler RA, Bowles VM. Tryptic and chymotryptic proteases released by larvae of the blowfly, Lucilia cuprina. Int J Parasitol. 1990;20(8):1019-23. Telford G, Brown AP, Kind A, English JS, Pritchard DI. Maggot chymotrypsin I from Lucilia sericata is resistant to endogenous wound protease inhibitors. Br J Dermatol. 2011;164(1):192-6. Sze SH, Dunham JP, Carey B, Chang PL, Li F, Edman RM, et al. A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates. Insect molecular biology. 2012;21(2):205-21. Anstead CA, Korhonen PK, Young ND, Hall RS, Jex AR, Murali SC, et al. Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nature communications. 2015;6:7344. Franta Z, Vogel H, Lehmann R, Rupp O, Goesmann A, Vilcinskas A. Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BioMed Research International. 2016;2016:8285428. Erdmann GR. Antibacterial action of Myiasis-causing flies. Parasitology today. 1987;3(7):214-6. Thomas S, Andrews AM, Hay NP, Bourgoise S. The anti-microbial activity of maggot secretions: results of a preliminary study. Journal of tissue viability. 1999;9(4):127-32. Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein science : a publication of the Protein Society. 2001;10(6):1206-15. Phoenix DA, Dennison SR, Harris F. Anionic Antimicrobial Peptides. Antimicrobial Peptides. 2013:doi: 10.1002/9783527652853.ch3. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Current pharmaceutical design. 2009;15(21):2377-92. Wennerberg K, Der CJ. Rho-family GTPases: it's not only Rac and Rho (and I like it). Journal of Cell Science. 2004;117(8):1301. Higuchi M, Masuyama N, Fukui Y, Suzuki A, Gotoh Y. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Current Biology. 2001;11(24):1958-62. Johnson DI. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiology and molecular biology reviews : MMBR. 1999;63(1):54-105. Khamis AM, Essack M, Gao X, Bajic VB. Distinct profiling of antimicrobial peptide families. Bioinformatics. 2015;31(6):849-56. Nagao T, Mishima D, Javkhlantugs N, Wang J, Ishioka D, Yokota K, et al. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochimica et biophysica acta. 2015;1848(11 Pt A):2789-98. Hyde AJ, Parisot J, McNichol A, Bonev BB. Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci U S A. 2006;103(52):19896-901. Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Peptide Science. 1998;47(6):451-63. Shi W, Li C, Li M, Zong X, Han D, Chen Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Applied microbiology and biotechnology. 2016;100(11):5059-67. Polakovicova S, Polak S, Kuniakova M, Cambal M, Caplovicova M, Kozanek M, et al. The effect of salivary gland extract of Lucilia sericata maggots on human dermal fibroblast proliferation within collagen/hyaluronan membrane in vitro: transmission electron microscopy study. Advances in skin & wound care. 2015;28(5):221-6. Titulaer MK. Candidate biomarker discovery for angiogenesis by automatic integration of Orbitrap MS1 spectral- and X!Tandem MS2 sequencing information. Genomics, proteomics & bioinformatics. 2013;11(3):182-94. Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes & development. 2002;16(9):1032-54. Lee K, Boyd KL, Parekh DV, Kehl-Fie TE, Baldwin HS, Brakebusch C, et al. Cdc42 promotes host defenses against fatal infection. Infection and immunity. 2013;81(8):2714-23. Ratcliffe N, Azambuja P, Mello CB. Recent advances in developing insect natural products as potential modern day medicines. Evidence-based complementary and alternative medicine : eCAM. 2014;2014:904958. Ryan MA, Akinbi HT, Serrano AG, Perez-Gil J, Wu H, McCormack FX, et al. Antimicrobial activity of native and synthetic surfactant protein B peptides. Journal of immunology (Baltimore, Md : 1950). 2006;176(1):416-25. Tavares LS, Rettore JV, Freitas RM, Porto WF, Duque AP, Singulani Jde L, et al. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides. 2012;37(2):294-300. Gaussier H, Morency H, Lavoie MC, Subirade M. Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Applied and environmental microbiology. 2002;68(10):4803-8. Sikora K, Jaskiewicz M, Neubauer D, Bauer M, Bartoszewska S, Baranska-Rybak W, et al. Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides. Amino Acids. 2018;50(5):609-19. Bai L, Sheeley S, Sweedler J. Analysis of Endogenous C-Amino Acid-Containing Peptides in Metazoa2009. 7-24 p. Griffiths J. Hunting the elusive D-amino acid. Analytical Chemistry. 2008;80(9):3070-. Vega Chaparro SC, Valencia Salguero JT, Martinez Baquero DA, Rosas Perez JE. Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens. Biomed Res Int. 2018;2018:5252891. Xin P, Sun Y, Kong H, Wang Y, Tan S, Guo J, et al. A unimolecular channel formed by dual helical peptide modified pillar[5]arene: correlating transmembrane transport properties with antimicrobial activity and haemolytic toxicity. Chemical communications (Cambridge, England). 2017;53(83):11492-5. Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cellular and molecular life sciences : CMLS. 2011;68(13):2161-76. Jiang Z, Vasil AI, Vasil ML, Hodges RS. "Specificity Determinants" Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals (Basel, Switzerland). 2014;7(4):366-91. Saravanan R, Bhunia A, Bhattacharjya S. Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: implications in cell selective lysis by D-amino acid containing antimicrobial peptides. Biochimica et biophysica acta. 2010;1798(2):128-39. Oren Z, Hong J, Shai Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. The Journal of biological chemistry. 1997;272(23):14643-9. Wang G. Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. Biochimica et biophysica acta. 2007;1768(12):3271-81. Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules (Basel, Switzerland). 2017;22(9). Di Grazia A, Cappiello F, Cohen H, Casciaro B, Luca V, Pini A, et al. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids. 2015;47(12):2505-19. Yoshida M, Hinkley T, Tsuda S, Abul-Haija YM, McBurney RT, Kulikov V, et al. Using Evolutionary Algorithms and Machine Learning to Explore Sequence Space for the Discovery of Antimicrobial Peptides. Chem. 2018;4(3):533-43. Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology. 2007;2(1):1-33. Kasetty G, Papareddy P, Kalle M, Rydengard V, Morgelin M, Albiger B, et al. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrobial agents and chemotherapy. 2011;55(6):2880-90. Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, et al. Exploring the role of unnatural amino acids in antimicrobial peptides. Scientific reports. 2018;8(1):8888. Manabe T, Kawasaki K. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Scientific reports. 2017;7:43384. Huang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y, et al. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an alpha-helical antibacterial peptide against bacteria. Peptides. 2011;32(7):1488-95. Porto W, Silva O, Franco O. Prediction and rational design of antimicrobial peptides, in Protein Structure2019. Torres M, Pedron C, de Araujo I, da Silva Junior P, D. Silva F, Junior V. Decoralin Analogs with Increased Resistance to Degradation and Lower Hemolytic Activity2017. 18-23 p. Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC bioinformatics. 2007;8:263-. Sitaram N, Nagaraj R. Host-defense antimicrobial peptides: importance of structure for activity. Current pharmaceutical design. 2002;8(9):727-42. Matsuzaki K, Nakamura A, Murase O, Sugishita K, Fujii N, Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997;36(8):2104-11. Torrent M, Nogues VM, Boix E. A theoretical approach to spot active regions in antimicrobial proteins. BMC bioinformatics. 2009;10:373. Pinilla Beltran YT, Segura NA, Bello FJ. Synanthropy of Calliphoridae and Sarcophagidae (Diptera) in Bogota, Colombia. Neotropical entomology. 2012;41(3):237-42. Gongora J, Diaz-Roa A, Ramirez-Hernandez A, Cortes-Vecino JA, Gaona MA, Patarroyo MA, et al. Evaluating the effect of Sarconesiopsis magellanica (Diptera: Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. J Diabetes Res. 2015;2015:270253. Diaz-Roa A, Gaona MA, Segura NA, Ramirez-Hernandez A, Cortes-Vecino JA, Patarroyo MA, et al. Evaluating Sarconesiopsis magellanica blowfly-derived larval therapy and comparing it to Lucilia sericata-derived therapy in an animal model. Acta Trop. 2016;154:34-41. Laverde-Paz MJ, Echeverry MC, Patarroyo MA, Bello FJ. Evaluating the anti-leishmania activity of Lucilia sericata and Sarconesiopsis magellanica blowfly larval excretions/secretions in an in vitro model. Acta tropica. 2018;177:44-50. Diaz-Roa A, Patarroyo MA, Bello FJ, Da Silva PI, Jr. Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Front Microbiol. 2018;9:2249. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA. 2012. Hetru C, Bulet P. Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods in molecular biology. 1997;78:35-49. Umerska A, Strandh M, Cassisa V, Matougui N, Eveillard M, Saulnier P. Synergistic Effect of Combinations Containing EDTA and the Antimicrobial Peptide AA230, an Arenicin-3 Derivative, on Gram-Negative Bacteria. Biomolecules. 2018;8(4). Bulet P. Strategies for the discovery, isolation, and characterization of natural bioactive peptides from the immune system of invertebrates. Methods in molecular biology. 2008;494:9-29. Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World journal of microbiology & biotechnology. 2014;30(5):1533-40. Segura-Ramírez PJ, Silva Júnior PI. Loxosceles gaucho Spider Venom: An Untapped Source of Antimicrobial Agents. Toxins. 2018;10(12):522. Uniprot. 2019 [March 7th 2019]. Available from: www.uniprot.org. Blast. 2019 [March 7th 2019]. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402. Antimicrobial-peptide-database. 2019 [April 7th 2019]. Available from: http://aps.unmc.edu/AP/prediction/prediction_main.php. Expasy. [March 7th 2019]. Available from: http://web.expasy.org/protparam/. i-Tasser. 2019 [March 7th 2019]. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7-8. Lopes Alves F, Oliva M, Miranda A. Conformational and biological properties of Bauhinia bauhinioides kallikrein inhibitor fragments with bradykinin-like activities2015. Carretero GPB, Saraiva GKV, Cauz ACG, Rodrigues MA, Kiyota S, Riske KA, et al. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide. Biochim Biophys Acta Biomembr. 2018;1860(8):1502-16. Li L, Song X, Yin Z, Jia R, Li Z, Zhou X, et al. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro. Microbiological research. 2016;186-187:139-45. Zou L, Lu J, Wang J, Ren X, Zhang L, Gao Y, et al. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO molecular medicine. 2017;9(8):1165-78. Yamamoto D, Hernandes RT, Liberatore AM, Abe CM, Souza RB, Romao FT, et al. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites. PloS one. 2017;12(2):e0171385. Anstead CA, Korhonen PK, Young ND, Hall RS, Jex AR, Murali SC, et al. Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nat Commun. 2015;6:7344. Wang H, Yu Z, Hu Y, Li F, Liu L, Zheng H, et al. Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis. Peptides. 2012;35(2):285-90. Lemaire S, Trinh TT, Le HT, Tang SC, Hincke M, Wellman-Labadie O, et al. Antimicrobial effects of H4-(86-100), histogranin and related compounds--possible involvement of DNA gyrase. The FEBS journal. 2008;275(21):5286-97. LI Shang-Wei ZB-S, DU Juan. Isolation, purification, and detection of the antimicrobial activity of the antimicrobial peptide CcAMP1 from <em>Coridius chinensis</em> (Hemiptera: Dinidoridae). Acta Entomologica Sinica. 2015;58(6):610-6. Lv X, Lin Y, Jie Y, Sun M, Bolin Z, Bai F, et al. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai2017. Ramirez-Carreto S, Quintero-Hernandez V, Jimenez-Vargas JM, Corzo G, Possani LD, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides. 2012;34(2):290-5. Webb RL. Circular Dichroism and the Conformational Analysis of Biomolecules Edited by Gerald D. Fasman. Plenum Press, New York and London. 1996. ix + 738 pp. 17 × 25.5 cm. ISBN 0-306-45152-5. $125.00. Journal of Medicinal Chemistry. 1996;39(26):5285-6. Heliquest. 2019 [March 7th 2019]. Available from: http://heliquest.ipmc.cnrs.fr. Papareddy P, Kasetty G, Kalle M, Bhongir RK, Morgelin M, Schmidtchen A, et al. NLF20: an antimicrobial peptide with therapeutic potential against invasive Pseudomonas aeruginosa infection. The Journal of antimicrobial chemotherapy. 2016;71(1):170-80. Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proceedings Biological sciences. 2018;285(1874). Nagarajan D, Nagarajan T, Roy N, Kulkarni O, Ravichandran S, Mishra M, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. The Journal of biological chemistry. 2018;293(10):3492-509. Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2003;23(7):916-24. Rodriguez-Rojas A, Moreno-Morales J, Mason AJ, Rolff J. Cationic antimicrobial peptides do not change recombination frequency in Escherichia coli. Biology letters. 2018;14(3). Duvick JP, Rood T, Rao AG, Marshak DR. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem. 1992;267(26):18814-20. Sousa DA, Porto WF, Silva MZ, da Silva TR, Franco OL. Influence of Cysteine and Tryptophan Substitution on DNA-Binding Activity on Maize alpha-Hairpinin Antimicrobial Peptide. Molecules (Basel, Switzerland). 2016;21(8). Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B, et al. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrobial agents and chemotherapy. 2013;57(1):220-8. Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-55. Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32-7. Zhu X, Ma Z, Wang J, Chou S, Shan A. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide. PloS one. 2014;9(12):e114605. Giacometti A, Cirioni O, Barchiesi F, Fortuna M, Scalise G. In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. J Antimicrob Chemother. 1999;44(5):641-5. Hirt H, Gorr SU. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2013;57(10):4903-10. Wnorowska U, Niemirowicz K, Myint M, Diamond SL, Wróblewska M, Savage PB, et al. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58. Antimicrobial agents and chemotherapy. 2015;59(7):3808-15. Lin P, Li Y, Dong K, Li Q. The Antibacterial Effects of an Antimicrobial Peptide Human beta-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Current microbiology. 2015;71(2):170-6. Mallapragada S, Wadhwa A, Agrawal P. Antimicrobial peptides: The miraculous biological molecules. Journal of Indian Society of Periodontology. 2017;21(6):434-8. Nijnik A, Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerging health threats journal. 2009;2:e1. Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A. 2002;99(20):12628-32. Oh D, Sun J, Nasrolahi Shirazi A, LaPlante KL, Rowley DC, Parang K. Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug-resistant pathogens. Molecular pharmaceutics. 2014;11(10):3528-36. Richter MF, Hergenrother PJ. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Annals of the New York Academy of Sciences. 2019;1435(1):18-38. Pooi Yin C, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multi-drug resistant bacteria2017. Hirt H, Gorr S-U. Antimicrobial Peptide GL13K Is Effective in Reducing Biofilms of Pseudomonas aeruginosa2013. Henriksen JR, Etzerodt T, Gjetting T, Andresen TL. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PloS one. 2014;9(3):e91007. Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther. 2017;11:3159-70. Cardoso MH, Ribeiro SM, Nolasco DO, de la Fuente-Nunez C, Felicio MR, Goncalves S, et al. A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep. 2016;6:21385. Rudilla H, merlos A, Sans E, Fusté E, Sierra J, Zalacain A, et al. New and old tools to evaluate new antimicrobial peptides2018. 522 p. Misra R, Sahoo SK. Antibacterial activity of doxycycline-loaded nanoparticles. Methods in enzymology. 2012;509:61-85. Barnes KM, Gennard DE, Dixon RA. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull Entomol Res. 2010;100(6):635-40. Li Z, Mao R, Teng D, Hao Y, Chen H, Wang X, et al. Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Scientific reports. 2017;7(1):12124. Hu F, Wu Q, Song S, She R, Zhao Y, Yang Y, et al. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC microbiology. 2016;16(1):287. He J, Luo X, Jin D, Wang Y, Zhang T. Identification, Recombinant Expression, and Characterization of LHG2, a Novel Antimicrobial Peptide of Lactobacillus casei HZ1. Molecules (Basel, Switzerland). 2018;23(9). Liang S-S, Wang T-N, Tsai E-M. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes2014. 20770-88 p. Yuan X, Zhu M, Tian G, Zhao Y, Zhao L, Ng TB, et al. Biochemical characteristics of a novel protease from the basidiomycete Amanita virgineoides. Biotechnology and applied biochemistry. 2017;64(4):532-40. Hoffmann JA. The immune response of Drosophila. Nature. 2003;426(6962):33-8. Pedron CN, Andrade GP, Sato RH, Torres MT, Cerchiaro G, Ribeiro AO, et al. Anticancer activity of VmCT1 analogs against MCF-7 cells. Chemical biology & drug design. 2018;91(2):588-96. Ramírez-Carreto S, Quintero-Hernandez V, María Jiménez-Vargas J, Corzo G, Possani L, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae2012. 290-5 p. Formaggio F, Toniolo C. Electronic and vibrational signatures of peptide helical structures: A tribute to Anton Mario Tamburro. Chirality. 2010;22 Suppl 1:E30-9. Juba M, Porter D, Dean S, Gillmor S, Bishop B. Characterization and Performance of Short Cationic Antimicrobial Peptide Isomers2013. Da F, Joo H-S, Cheung G, E. Villaruz A, Rohde H, Luo X-X, et al. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus2017. Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. Journal of molecular biology. 2007;370(3):459-70. Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 2001;268(21):5589-600. Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 2000;55(1):4-30. Iwai H, Nakajima Y, Natori S, Arata Y, Shimada I. Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. European journal of biochemistry. 1993;217(2):639-44. Buhroo Z, Ma Kashmir I, Bhat, Na Kashmir I, Ganai, And Kashmir J, et al. Antimicrobial peptides from insects with special reference to silkworm Bombyx mori L: A review2018. Memarpoor-Yazdi M, Zardini H, Asoodeh A. A Novel Antimicrobial Peptide Derived from the Insect Paederus dermatitis2012. J. Betts M, Russell R. Amino‐Acid Properties and Consequences of Substitutions. Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data: Second Edition2007. p. 311-42. Kristian Erlin Nygaard M, Schou Andersen A, Kristensen H-H, Krogfelt KA, Fojan P, Wimmer R. The insect defensin lucifensin from Lucilia sericata2012. 277-82 p. Kainz K, Tadic J, Zimmermann A, Pendl T, Carmona-Gutierrez D, Ruckenstuhl C, et al. Methods to Assess Autophagy and Chronological Aging in Yeast. Methods in enzymology. 2017;588:367-94. Diaz-Achirica P, Prieto S, Ubach J, Andreu D, Rial E, Rivas L. Permeabilization of the mitochondrial inner membrane by short cecropin-A-melittin hybrid peptides. Eur J Biochem. 1994;224(1):257-63. Chen HM, Chan SC, Lee JC, Chang CC, Murugan M, Jack RW. Transmission electron microscopic observations of membrane effects of antibiotic cecropin B on Escherichia coli. Microsc Res Tech. 2003;62(5):423-30. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543-75. Hamley IW. Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chem Rev. 2017;117(24):14015-41. Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel, Switzerland). 2016;9(3):59. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797-810. Hwang D, Lim Y-H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Scientific reports. 2015;5:10029. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free radical biology & medicine. 2011;51(10):1872-81. Virdi AS, Singh N. Antimicrobial Peptides and Polyphenols: Implications in Food Safety and Preservation. In: Juneja VK, Dwivedi HP, Sofos JN, editors. Microbial Control and Food Preservation: Theory and Practice. New York, NY: Springer New York; 2017. p. 117-52. Hsu C-H, Chen C, Jou M-L, Lee AY-L, Lin Y-C, Yu Y-P, et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA2005. 4053-64 p. Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther. 2007;5(6):951-9. Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66(4):236-48. El-Hajj ZW, Newman EB. How much territory can a single E. coli cell control? Frontiers in microbiology. 2015;6:309-. Poole K. Bacterial stress responses as determinants of antimicrobial resistance. The Journal of antimicrobial chemotherapy. 2012;67(9):2069-89. Shapiro RS. Antimicrobial-induced DNA damage and genomic instability in microbial pathogens. PLoS pathogens. 2015;11(3):e1004678-e. N Walters R, Piddock L, Wise R. The effect of mutations in the SOS response on the kinetics of quinolone killing1990. 863-73 p. Kawarai T, Wachi M, Ogino H, Furukawa S, Suzuki K, Ogihara H, et al. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Applied microbiology and biotechnology. 2004;64(2):255-62. Hill TM, Sharma B, Valjavec-Gratian M, Smith J. sfi-independent filamentation in Escherichia coli Is lexA dependent and requires DNA damage for induction. J Bacteriol. 1997;179(6):1931-9. Lutkenhaus J. Regulation of cell division in E. coli. Trends in genetics : TIG. 1990;6(1):22-5. Gutsmann T. Interaction between antimicrobial peptides and mycobacteria. Biochim Biophys Acta. 2016;1858(5):1034-43.
score 10,754934