Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp
A pesar de que varios candidatos a la vacuna contra la malaria se encuentran actualmente ensayos de fase clínica 2 y 3, sus mecanismos de protección inmunológica no se comprenden completamente y la duración de la protección de la vacuna se desconoce en gran medida. El modelo del mono Aotus spp. ha s...
Autor Principal: | |
---|---|
Otros Autores: | |
Formato: | Tesis de maestría (Master Thesis) |
Lenguaje: | Español (Spanish) |
Publicado: |
Universidad del Rosario
2019
|
Materias: | |
Acceso en línea: | http://repository.urosario.edu.co/handle/10336/20148 |
id |
ir-10336-20148 |
---|---|
recordtype |
dspace |
institution |
EdocUR - Universidad del Rosario |
collection |
DSpace |
language |
Español (Spanish) |
topic |
Inmunología Anticuerpo Monoclonal Citometría de flujo Fisiología humana Inmunología Anticuerpos Citometría de flujo |
spellingShingle |
Inmunología Anticuerpo Monoclonal Citometría de flujo Fisiología humana Inmunología Anticuerpos Citometría de flujo Cubides Amézquita, Jenner Rodrigo Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
description |
A pesar de que varios candidatos a la vacuna contra la malaria se encuentran actualmente ensayos de fase clínica 2 y 3, sus mecanismos de protección inmunológica no se comprenden completamente y la duración de la protección de la vacuna se desconoce en gran medida. El modelo del mono Aotus spp. ha sido recomendado por la Organización Mundial de la Salud para el estudio de los candidatos a la vacuna contra la malaria debido a las fuertes similitudes con la patología y los antecedentes genéticos observados en humanos. Sin embargo, la falta de anticuerpos específicos para los marcadores de superficie molecular de las células inmunes en Aotus, ha retrasado los avances en la investigación de la malaria. Entre los anticuerpos monoclonales comerciales (mAbs) para los marcadores moleculares de células T de memoria CD19 +, CD27 + B y CD4 +, CD45RO +, solo los del clon SK3 reconocieron las células T Aotus CD4. En este trabajo, los enfoques bioinformáticos fueron usados para diseñar péptidos antigénicos que corresponden a las regiones extracelulares de las proteínas de membrana CD19, CD27, CD4 y CD45RO, para producir mAbs. 1746 clones de hibridoma resultantes reconocieron los marcadores de superficie molecular de las células inmunes por citometría de flujo y el 30% de ellos se unen al péptido sintético por ELISA. Los mAbs, CD194G12A3G3, CD275F11C11, CD45H3D10 y CD45RO3A8G1 se unieron al 17,7%, 40,1%, 27,4 y 51% de los PBMC de Aotus con alta afinidad (100 ng / 106 células) pero solo mostraron afinidad media a las células humanas (300 ng / 106 células) en análisis FACS. En los ensayos de doble marcaje de las células B y T, mostró que los mAbs CD194G12A3G3 y CD275F11C11 reconocieron el 15,9%, y CD45H3D10 y CD45RO3A8G1 se unieron al 20,6% de las PBMC de Aotus, lo que sugiere que los mAbs reconocieron los marcadores de proteínas de membrana de las células B y T. Estos mAbs son útiles para la identificación y el seguimiento de las células de memoria en el modelo de Aotus para dilucidar qué células inmunes humanas pueden mediar la protección contra la malaria. |
author2 |
Patarroyo, Manuel A. |
author_facet |
Patarroyo, Manuel A. Cubides Amézquita, Jenner Rodrigo |
format |
Tesis de maestría (Master Thesis) |
author |
Cubides Amézquita, Jenner Rodrigo |
author_sort |
Cubides Amézquita, Jenner Rodrigo |
title |
Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
title_short |
Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
title_full |
Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
title_fullStr |
Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
title_full_unstemmed |
Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
title_sort |
producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp |
publisher |
Universidad del Rosario |
publishDate |
2019 |
url |
http://repository.urosario.edu.co/handle/10336/20148 |
_version_ |
1712098445761708032 |
spelling |
ir-10336-201482021-08-22T06:01:02Z Producción de anticuerpos monoclonales que reconozcan proteínas de membrana en células de memoria en aotus spp Monoclonal Antibodies for the Tracking of Aotus spp. Memory T and B Cells Cubides Amézquita, Jenner Rodrigo Patarroyo, Manuel A. Díaz Arévalo, Diana Inmunología Anticuerpo Monoclonal Citometría de flujo Fisiología humana Inmunología Anticuerpos Citometría de flujo A pesar de que varios candidatos a la vacuna contra la malaria se encuentran actualmente ensayos de fase clínica 2 y 3, sus mecanismos de protección inmunológica no se comprenden completamente y la duración de la protección de la vacuna se desconoce en gran medida. El modelo del mono Aotus spp. ha sido recomendado por la Organización Mundial de la Salud para el estudio de los candidatos a la vacuna contra la malaria debido a las fuertes similitudes con la patología y los antecedentes genéticos observados en humanos. Sin embargo, la falta de anticuerpos específicos para los marcadores de superficie molecular de las células inmunes en Aotus, ha retrasado los avances en la investigación de la malaria. Entre los anticuerpos monoclonales comerciales (mAbs) para los marcadores moleculares de células T de memoria CD19 +, CD27 + B y CD4 +, CD45RO +, solo los del clon SK3 reconocieron las células T Aotus CD4. En este trabajo, los enfoques bioinformáticos fueron usados para diseñar péptidos antigénicos que corresponden a las regiones extracelulares de las proteínas de membrana CD19, CD27, CD4 y CD45RO, para producir mAbs. 1746 clones de hibridoma resultantes reconocieron los marcadores de superficie molecular de las células inmunes por citometría de flujo y el 30% de ellos se unen al péptido sintético por ELISA. Los mAbs, CD194G12A3G3, CD275F11C11, CD45H3D10 y CD45RO3A8G1 se unieron al 17,7%, 40,1%, 27,4 y 51% de los PBMC de Aotus con alta afinidad (100 ng / 106 células) pero solo mostraron afinidad media a las células humanas (300 ng / 106 células) en análisis FACS. En los ensayos de doble marcaje de las células B y T, mostró que los mAbs CD194G12A3G3 y CD275F11C11 reconocieron el 15,9%, y CD45H3D10 y CD45RO3A8G1 se unieron al 20,6% de las PBMC de Aotus, lo que sugiere que los mAbs reconocieron los marcadores de proteínas de membrana de las células B y T. Estos mAbs son útiles para la identificación y el seguimiento de las células de memoria en el modelo de Aotus para dilucidar qué células inmunes humanas pueden mediar la protección contra la malaria. Even though several malaria vaccine candidates are currently in clinical phase 2, and 3 trials, their mechanisms of immune protection are not fully understood, and durations of vaccine protection are largely unknown. The Aotus monkey model has been recommended by the World Health Organization for the study of malaria vaccine candidates because of strong similarities to pathology and genetic background observed in humans. However, the lack of antibodies specific for molecular surface markers of immune cells in Aotus have delayed advances in malaria research. Among commercial monoclonal antibodies (mAbs) for human CD19+, CD27+ B cell and CD4+, CD45RO+ memory T cell molecular markers, only those of the clone SK3 recognized Aotus CD4 T cells. Here, bioinformatics approaches were used to design antigenic peptides that correspond to the extracellular regions of the membrane proteins CD19, CD27, CD4, and CD45RO, to produce mAbs. 1746 resulting hybridoma clones recognized molecular surface markers of immune cells by flow cytometry and 30% of them bond to the synthetic peptide by ELISA. The mAbs, CD194G12A3G3, CD275F11C11, CD45H3D10, and CD45RO3A8G1 bound to 17.7%, 40.1%, 27.4 and 51% of the Aotus’ PBMCs with high affinity (100 ng/106 cells) but displayed only medium affinity to human cells (300 ng/106 cells) in FACS analyses. Double staining of B and T cells showed that the mAbs CD194G12A3G3 and CD275F11C11 recognized 15.9%, and CD45H3D10 and CD45RO3A8G1 bound to 20.6% of Aotus’ PBMCs, suggesting that the mAbs recognized membrane protein markers of memory B and T cells. These mAbs are useful for the identification and tracking of memory cells in the Aotus model to elucidate which human immune cells may mediate protection against malaria 2019-06-05 2019-08-21T20:44:18Z info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://repository.urosario.edu.co/handle/10336/20148 spa Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess application/pdf Universidad del Rosario Maestría en Ciencias con Énfasis en Genética Humana Escuela de Medicina y Ciencias de la Salud instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR Akbar, A. N., Terry, L., Timms, A., Beverley, P. C., Janossy, G., Akbar, A. N., … Janossy, G. (2017). Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells . The Journal of Immnunology, 140(7), 2171–2178. Amek, N. O., Van Eijk, A., Bayoh, N., Smith, T., Vounatsou, P., Lindblade, K. A., … Slutsker, L. (2018). Infant and child mortality in relation to malaria transmission in KEMRI/CDC HDSS, Western Kenya: Validation of verbal autopsy. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-018-2184-x AVMA (American Veterinary Medical Association). (2013). AVMA guidelines for the Euthanasia of Animals: 2013 Edition. American Veterinary Medical Association, Schaumburg, Illinois. In American Veterinary Medical Association, Schaumburg, Illinois. https://doi.org/10.1016/B978-012088449-0.50009-1 Baaten, B. J. G., Li, C. R., Deiro, M. F., Lin, M. M., Linton, P. J., & Bradley, L. M. (2010). CD44 Regulates Survival and Memory Development in Th1 Cells. Cell, 32(1), 104–115. https://doi.org/10.1016/j.immuni.2009.10.011 Becker, H. J., Shimabukuro-Vornhagen, A., Theurich, S., von Bergwelt-Baildon, M. S., & Kondo, E. (2016). Processing and MHC class II presentation of exogenous soluble antigen involving a proteasome-dependent cytosolic pathway in CD40-activated B cells. European Journal of Haematology, 97(2), 166–174. https://doi.org/10.1111/ejh.12699 Beignon, A. S., Le Grand, R., & Chapon, C. (2014). In vivo imaging in NHP models of malaria: Challenges, progress and outlooks. Parasitology International, 63(1), 206–215. https://doi.org/10.1016/j.parint.2013.09.001 Birkeland, M. L., Johnson, P., Trowbridge, I. S., & Pure, E. (1989). Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proceedings of the National Academy of Sciences, 86(17), 6734–6738. https://doi.org/10.1073/pnas.86.17.6734 Carbonetti, S., Oliver, B. G., Vigdorovich, V., Dambrauskas, N., Sack, B., Bergl, E., … Sather, D. N. (2017). A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning. Journal of Immunological Methods, 448, 66–73. https://doi.org/10.1016/j.jim.2017.05.010 Chan, B. M., Badh, A., Berry, K. A., Grauer, S. A., & King, C. T. (2018). Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets. SLAS Discovery, 23(7), 613–623. https://doi.org/10.1177/2472555218774334 Costa, D., Assis, G., Alessandra de Souza Silva, F., Araujo, F., César de Souza Junior, J., Hirano, Z., … Brito, C. (2015). Plasmodium simium, a Plasmodium vivax-Related Malaria Parasite: Genetic Variability of Duffy Binding Protein II and the Duffy Antigen/Receptor for Chemokines. PloS One, 10, e0131339. https://doi.org/10.1371/journal.pone.0131339 Daubenberger, C. A., Spirig, R., Patarroyo, M. E., & Pluschke, G. (2007). Flow cytometric analysis on cross-reactivity of human-specific CD monoclonal antibodies with splenocytes of Aotus nancymaae, a non-human primate model for biomedical research. Veterinary Immunology and Immunopathology, 119(1), 14–20. https://doi.org/10.1016/j.vetimm.2007.06.010 Delisi, C., & Berzofskyt, J. A. Y. A. (1985). T-cell antigenic sites tend to be amphipathic structures j _ k. Immunologymunology, 82(October), 7048–7052. Doolan, D. L., & Beier, J. C. (2002). Malaria Methods and Protocols. In D. Doonlan (Ed.), Humana Press. Humana Press. Elgueta, R., Vries, V. C. De, Noelle, R. J., & Noelle, R. J. (2010). The immortality of humoral immunity. Immunological Reviews, 236, 139–150. Erik, J., Larsen, P., Lund, O., & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immnunome Research, 7, 1–7. https://doi.org/10.1186/1745-7580-2-2 Fehr, B. T., Rickert, R. C., Odermatt, B., Roes, J., Rajewsky, K., Hengartner, H., & Zinkernagel, R. M. (1998). Antiviral Protection and Germinal Center Formation,But Impaired B Cell Memory in the Absence of CD19. The Journal of Experimental Medicine, 188(1) Fleagle, J. G. (2013). Primate adaptation and evolution. Academic press. Foung, S. K., Sasaki, D. T., Grumet, F. C., & Engleman, E. G. (1982). Production of functional human TT hybridomas in selection medium lacking aminopterin and thymidine. Proceedings of the National Academy of Sciences, 79(23), 7484–7488. Galfre, G., & Milstein, C. (1981). Preparation of monoclonal antibodies: Strategies and procedures. Elsevier. Gavilondo, J. V. (1995). Anticuerpos monoclonales: Teoría y Práctica. In Biotecnología aplicada. 1ra edición. La Habana. Gosling, R., & von Seidlein, L. (2016). The Future of the RTS,S/AS01 Malaria Vaccine: An Alternative Development Plan. PLoS Medicine, 13(4), 1–6. https://doi.org/10.1371/journal.pmed.1001994 Grammer, A. C., Heaney, J., Lipsky, P. E., McFarland, R. D., & Darnell, B. F. (1999). Expression, regulation, and function of B cell-expressed CD154 in germinal centers. Journal of Immunology, 163(8), 4150–4159. Gray, D., Siepmann, K., Van Essen, D., Poudrier, J., Wykes, M., Jainandunsing, S., … Dullforce, P. (1996). B‐T lymphocyte interactions in the generation and survival of memory cells. Immunological Reviews, 150(1), 45–61. Groth, S. F. de S., & Scheidegger, D. (1980). Production of monoclonal antibodies: strategy and tactics. Journal of Immunological Methods, 35(1–2), 1–21. Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C., & Amigorena, S. (2002). Antigen Presentation and T Celltimulation by Dendritic Cells. Annual Review of Immunology, 20(1), 621–667. https://doi.org/10.1146/annurev.immunol.20.100301.064828 Han, B. K., Olsen, N. J., & Bottaro, A. (2019). The CD27 – CD70 pathway and pathogenesis of autoimmune disease. Seminars in Arthritis and Rheumatism, 45(4), 496–501. https://doi.org/10.1016/j.semarthrit.2015.08.001 Hase, H., Kanno, Y., Kojima, H., Morimoto, C., Okumura, K., & Kobata, T. (2002). CD27 and CD40 inhibit p53-independent mitochondrial pathways in apoptosis of B cells induced by B cell receptor ligation. Journal of Biological Chemistry, 277(49), 46950–46958. https://doi.org/10.1074/jbc.M209050200 Hegde, P. S., White, I. R., & Debouck, C. (2003). Interplay of transcriptomics and proteomics. Current Opinion in Biotechnology, 14(6), 647–651. https://doi.org/10.1016/j.copbio.2003.10.006 Herrera, S., Perlaza, B., & Bonelo, A. (2002). Aotus monkeys : their great value for anti-malaria vaccines and drug testing. 32, 1625–1635. Hoogenboom, H. R. (2005). Selecting and screening recombinant antibody libraries. Nature Biotechnology, 23(9), 1105–1116. https://doi.org/10.1038/nbt1126 Hotta, K., Sho, M., Fujimoto, K., Shimada, K., Yamato, I., Anai, S., … Nonomura, K. (2011). Prognostic significance of CD45RO þ memory T cells in renal cell carcinoma. British Journal of Cancer, 105(September), 1191–1196. https://doi.org/10.1038/bjc.2011.368 Houghten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proceedings of the National Academy of Sciences of the United States of America, 82(15), 5131–5135. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2410914%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC390513 Hviid, L., & Barfod, L. (2008). Malaria vaccines: immunity, models and monoclonal antibodies. Trends in Parasitology, 24(9), 392–395. https://doi.org/10.1016/j.pt.2008.05.007 Imwong, M., Madmanee, W., Suwannasin, K., Kunasol, C., Peto, T. J., Tripura, R., … White, N. J. (2019). Asymptomatic Natural Human Infections With the Simian Malaria Parasites Plasmodium cynomolgi and Plasmodium knowlesi. Journal of Infectious Diseases, 219(5), 695–702. https://doi.org/10.1093/infdis/jiy519 Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. Joyner, C., Barnwell, J. W., & Galinski, M. R. (2015). No more monkeying around: Primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Frontiers in Microbiology, 6(MAR), 1–8. https://doi.org/10.3389/fmicb.2015.00145 Kennett, R. H., & MacKearn, T. J. (1982). Monoclonal antibodies. Springer. Kozbor, D., & Roder, J. C. (1983). The production of monoclonal antibodies from human lymphocytes. Immunology Today, 4(3), 72–79 Kumai, T., Kobayashi, H., Harabuchi, Y., & Celis, E. (2017). Peptide vaccines in cancer — old concept revisited. Current Opinion in Immunology, 45, 1–7. https://doi.org/10.1016/j.coi.2016.11.001 Lanka, S., City, R., Ridley, G., Siddiqui, W. A., Briggs, S., Chulay, J., … Held, J. R. (1988). Role of non-human primates in malaria vaccine development : Memorandum from a WHO Meeting (Vol. 66). Lesley, J., Hyman, R., & Kincade, P. W. (1993). CD44 and its interaction with extracellular matrix. In Advances in immunology (Vol. 54, pp. 271–335). Elsevier. Li, W., Joshi, M., Singhania, S., Ramsey, K., & Murthy, A. (2014). Peptide Vaccine: Progress and Challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515 Loré, K. (2004). Isolation and Immunophenotyping of Human and Rhesus Macaque Dendritic Cells. In Methods in cell biology (Vol. 75, pp. 623–642). Manego, R. Z., Mombo-Ngoma, G., Witte, M., Held, J., Gmeiner, M., Gebru, T., … Matsiegui, P. B. (2017). Demography, maternal health and the epidemiology of malaria and other major infectious diseases in the rural department Tsamba-Magotsi, Ngounie Province, in central African Gabon. BMC Public Health, 17(1), 1–7. https://doi.org/10.1186/s12889-017-4045-x Marasco, W. A., & Sui, J. (2007). The growth and potential of human antiviral monoclonal antibody therapeutics. Nature Biotechnology, 25(12), 1421. Menezes, R. G., Pant, S., Kanchan, T., Senthilkumaran, S., Kharoshah, M. A., Naik, R., … Fazil, A. (2012). Malaria : An Infection with Global Impact. In Malaria: Etiology, Pathogenesis and Treatments (pp. 97–125). Nardin, E. H., Oliveira, G. A., Calvo‐Calle, J. M., Castro, Z. R., Nussenzweig, R. S., Schmeckpeper, B., … Edelman, R. (2002). Synthetic Malaria Peptide Vaccine Elicits High Levels of Antibodies in Vaccinees of Defined HLA Genotypes. The Journal of Infectious Diseases, 182(5), 1486–1496. https://doi.org/10.1086/315871 National Research Council. (2011). Guide For The Care and Use of Laboratory Animals. Nunn, C., Altizer, S., & Altizer, S. M. (2006). Infectious diseases in primates: behavior, ecology and evolution. Oxford University Press. Oboh, M. A., Ndiaye, D., Badiane, A. S., Singh, U. S., Antony, H. A., Ali, N. A., … Das, A. (2018). Molecular epidemiology and evolution of drug-resistant genes in the malaria parasite Plasmodium falciparum in southwestern Nigeria. Infection, Genetics and Evolution, 66, 222–228. https://doi.org/10.1016/j.meegid.2018.10.007 Oyarzun, P., & Kobe, B. (2015). Computer-aided design of T-cell epitope-based vaccines : addressing population coverage. International Journal of Immunogenetics, 42, 313–321. https://doi.org/10.1111/iji.12214 Pape, K. A., Catron, D. M., Itano, A. A., & Jenkins, M. K. (2007). The Humoral Immune Response Is Initiated in Lymph Nodes by B Cells that Acquire Soluble Antigen Directly in the Follicles. Cell, 26(April), 491–502. https://doi.org/10.1016/j.immuni.2007.02.011 Patarroyo, M. E., Amador, R., Clavijo, P., Moreno, A., Guzman, F., Romero, P., … Ponton, G. (1988). A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature, 332(6160), 158. Patarroyo, M. E., Patarroyo, M. A., Pabón, L., Curtidor, H., & Poloche, L. A. (2015). Immune protection-inducing protein structures (IMPIPS) against malaria: The weapons needed for beating Odysseus. Vaccine, 33(52), 7525–7537. https://doi.org/10.1016/j.vaccine.2015.09.109 Pohanka, M. (2009). Monoclonal and polyclonal antibodies production-preparation of potent biorecognition element. Journal of Applied Biomedicina, 7, 115–121. Retrieved from http://www.zsf.jcu.cz/jab/7_3/pohanka.pdf/ Porto, J. M. D., Haberman, A. M., Kelsoe, G., & Shlomchik, M. J. (2002). Very Low Affinity B Cells Form Germinal Centers , Become Memory B Cells , and Participate in Secondary Immune Responses When Higher Affinity Competition Is Reduced. J. Exp. Med (c) The Rockefeller University Press, 195(9). https://doi.org/10.1084/jem.20011550 Puré Ellen, C. C. (2018). A crucial role for CD44 in inflammation Ellen Pur é and Carolyn A . Cuff. Trends in Molecular Medicine, 4914(July), 1–10. https://doi.org/10.1016/S1471-4914(01)01963-3 Rahman, Z. S. M., Rao, S. P., Kalled, S. L., & Manser, T. (2003). Normal Induction but Attenuated Progression of Germinal Center Responses in BAFF and BAFF-R Signaling – Deficient Mice. The Journal of Experimental Medicina, 1–13. https://doi.org/10.1084/jem.20030495 Raman, V. S., Bal, V., & Rath, S. (2019). Ligation of CD27 on Murine B Cells Responding to T-Dependent and T-Independent Stimuli Inhibits the Generation of Plasma Cells. The Journal of Immnunology, 165, 6809–6815. https://doi.org/10.4049/jimmunol.165.12.6809 Riccio, E. K., Pratt-Riccio, L. R., Bianco-Júnior, C., Sanchez, V., Totino, P. R., Carvalho, L. J., & Daniel-Ribeiro, C. T. (2015). Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malaria Journal, 14(1), 1–17. https://doi.org/10.1186/s12936-015-0688-1 Roccatano, D., Colombo, G., Fioroni, M., & Mark, A. E. (2002). Mechanism by which 2,2,2-trifluoroethanol watermixtures stabilize secondary-structure formation in peptides : A molecular dynamics study. Proceedings of the National Academy of Sciences of the United States of America, 99(19), 12179–12184. Sall, A., Walle, M., Wingren, C., Muller, S., Nyman, T., Vala, A., … Persson, H. (2016). Generation and analyses of human synthetic antibody libraries and their application for protein microarrays. Protein Engineering Design & Selection, 29(10), 427–437. https://doi.org/10.1093/protein/gzw042 Schneider, M. V, & Orchard, S. (2011). Omics technologies, data and bioinformatics principles. In Bioinformatics for omics Data (pp. 3–30). Springer. Sette, A., & Nielsen, M. (2012). NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics, 61(1), 1–13. https://doi.org/10.1007/s00251-008-0341-z Shinta, S. (2012). Kemungknan malaria primata sebagai masalah zoonosis. Media of Health Research and Development, 11(3 Sept). Retrieved from https://doaj.org/article/8c628780208b4536a420200121f2801a Shukla, A. A., Wolfe, L. S., Mostafa, S. S., & Norman, C. (2017). Evolving trends in mAb production processes. Bioengineering & Translational Medicine, 2(1), 58–69. https://doi.org/10.1002/btm2.10061 Shulman, M., Wilde, C. D., & Köhler, G. (1978). A better cell line for making hybridomas secreting specific antibodies. Nature, 276(5685), 269. Sonnhammer, E. L., von Heijne, G., & Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, 6, 175–182. https://doi.org/9783223 Soria-guerra, R. E., Nieto-gomez, R., Govea-alonso, D. O., & Rosales-mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction : Implications on vaccine development. Journal of Biomedical Informatics, 53, 405–414. https://doi.org/10.1016/j.jbi.2014.11.003 Surh, C. D., & Sprent, J. (2008). Homeostasis of Naive and Memory T Cells. Immunity, 29(6), 848–862. https://doi.org/10.1016/j.immuni.2008.11.002 Tazi, L., & Ayala, F. J. (2011). Unresolved direction of host transfer of Plasmodium vivax v. P. simium and P. malariae v. P. brasilianum. Infection, Genetics and Evolution, 11(1), 209–221. https://doi.org/10.1016/j.meegid.2010.08.007 Tiller, T. (2011). Single B cell antibody technologies. New Biotechnology, 28(5), 453–457. https://doi.org/10.1016/j.nbt.2011.03.014 Tomar, N., & De, R. K. (2010). Immunoinformatics : an integrated scenario. Immunology, 131, 153–168. https://doi.org/10.1111/j.1365-2567.2010.03330.x Wipasa, J., Suphavilai, C., Okell, L. C., Cook, J., Corran, P. H., Thaikla, K., … Hafalla, J. C. R. (2010). Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathogens, 6(2), e1000770. World Health Organization. (2018). World Malaria Report, 2018. Xiao, Y., Hendriks, J., Langerak, P., & Jacobs, H. (2019). CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation. The Journal of Immnunology, 172, 7432–7441. https://doi.org/10.4049/jimmunol.172.12.7432 Xu, Y., Beavitt, S.-J. E., Harder, K. W., Hibbs, M. L., & Tarlinton, D. M. (2002). The activation and subsequent regulatory roles of Lyn and CD19 after B cell receptor ligation are independent. The Journal of Immunology, 169(12), 6910–6918. |
score |
12,111491 |