Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco

Antecedentes: El strain longitudinal global (SLG) es una herramienta útil para la evaluación del rechazo en pacientes con trasplante cardíaco (P-TC). Sin embargo, existen controversias con respecto a su precisión y concordancia entre diferentes equipos y el impacto de los rechazos en el SLG. Métod...

Descripción completa

Detalles Bibliográficos
Autores Principales: Barrera López, Ana Madeleine, Martínez Caballero, Azucena
Otros Autores: Manrique Espinel, Frida Tatiana
Formato: Tesis de maestría (Master Thesis)
Lenguaje:Español (Spanish)
Publicado: Universidad del Rosario 2019
Materias:
Acceso en línea:http://repository.urosario.edu.co/handle/10336/20108
id ir-10336-20108
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Español (Spanish)
topic Trasplante cardiaco
Ecocardiografía
Strain
Rechazo Trasplante
Varias ramas de la medicina, Cirugía
Trasplantes de corazón
Enfermedades cardíacas
Ecocardiografía
Cardiología
Heart Transplantation
Echocardiography
Strain
Transplant Rejection
spellingShingle Trasplante cardiaco
Ecocardiografía
Strain
Rechazo Trasplante
Varias ramas de la medicina, Cirugía
Trasplantes de corazón
Enfermedades cardíacas
Ecocardiografía
Cardiología
Heart Transplantation
Echocardiography
Strain
Transplant Rejection
Barrera López, Ana Madeleine
Martínez Caballero, Azucena
Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
description Antecedentes: El strain longitudinal global (SLG) es una herramienta útil para la evaluación del rechazo en pacientes con trasplante cardíaco (P-TC). Sin embargo, existen controversias con respecto a su precisión y concordancia entre diferentes equipos y el impacto de los rechazos en el SLG. Métodos: P-TC estables fueron llevados a un análisis de SLG simultáneo con los equipos Philips® y General Electric® (GE). La concordancia del SLG fue evaluada utilizando diferencia de medias, gráficos de Bland-Altman y probabilidad de cobertura preespecificada de 2%. Luego, se dividieron en cuatro grupos según historia de rechazo trasplante cardiaco (TCr). Las diferencias entre grupos se realizaron con la prueba T de Student. Un valor de p <0,05 fue considerado significativo. Resultados: En 78 estudios comparativos, la diferencia de medias proporcional fue la más cercana a 0, lo que indica que ningún equipo ha subestimado o sobrestimado el SLG. Sin embargo, el porcentaje de observaciones que cayó dentro de un rango de 2% fue solamente de 47% y los límites en el gráfico de Bland-Altman fueron amplios. Aunque la fracción de eyección del ventrículo izquierdo (FEVI) fue en promedio normal (55,6 ± 7,6%), el promedio de SLG es bajo independientemente del equipo. El análisis de SLG mostró un valor menor con significación estadística en pacientes con historia de TCr (Grupo D), sin diferencias entre grupos con 1 o más rechazos. Conclusión: Los proveedores deben trabajar para mejorar el acuerdo en el análisis de GLS debido a la información significativa que proporciona en P-TC y otras cardiopatías.
author2 Manrique Espinel, Frida Tatiana
author_facet Manrique Espinel, Frida Tatiana
Barrera López, Ana Madeleine
Martínez Caballero, Azucena
format Tesis de maestría (Master Thesis)
author Barrera López, Ana Madeleine
Martínez Caballero, Azucena
author_sort Barrera López, Ana Madeleine
title Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
title_short Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
title_full Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
title_fullStr Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
title_full_unstemmed Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
title_sort comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco
publisher Universidad del Rosario
publishDate 2019
url http://repository.urosario.edu.co/handle/10336/20108
_version_ 1712098608541597696
spelling ir-10336-201082021-08-15T06:01:18Z Comparación del strain longitudinal global tomado con diferentes vendor en pacientes con trasplante cardíaco Barrera López, Ana Madeleine Martínez Caballero, Azucena Manrique Espinel, Frida Tatiana Perez-Fernandez, Oscar-Mauricio Trasplante cardiaco Ecocardiografía Strain Rechazo Trasplante Varias ramas de la medicina, Cirugía Trasplantes de corazón Enfermedades cardíacas Ecocardiografía Cardiología Heart Transplantation Echocardiography Strain Transplant Rejection Antecedentes: El strain longitudinal global (SLG) es una herramienta útil para la evaluación del rechazo en pacientes con trasplante cardíaco (P-TC). Sin embargo, existen controversias con respecto a su precisión y concordancia entre diferentes equipos y el impacto de los rechazos en el SLG. Métodos: P-TC estables fueron llevados a un análisis de SLG simultáneo con los equipos Philips® y General Electric® (GE). La concordancia del SLG fue evaluada utilizando diferencia de medias, gráficos de Bland-Altman y probabilidad de cobertura preespecificada de 2%. Luego, se dividieron en cuatro grupos según historia de rechazo trasplante cardiaco (TCr). Las diferencias entre grupos se realizaron con la prueba T de Student. Un valor de p <0,05 fue considerado significativo. Resultados: En 78 estudios comparativos, la diferencia de medias proporcional fue la más cercana a 0, lo que indica que ningún equipo ha subestimado o sobrestimado el SLG. Sin embargo, el porcentaje de observaciones que cayó dentro de un rango de 2% fue solamente de 47% y los límites en el gráfico de Bland-Altman fueron amplios. Aunque la fracción de eyección del ventrículo izquierdo (FEVI) fue en promedio normal (55,6 ± 7,6%), el promedio de SLG es bajo independientemente del equipo. El análisis de SLG mostró un valor menor con significación estadística en pacientes con historia de TCr (Grupo D), sin diferencias entre grupos con 1 o más rechazos. Conclusión: Los proveedores deben trabajar para mejorar el acuerdo en el análisis de GLS debido a la información significativa que proporciona en P-TC y otras cardiopatías. Background: Global longitudinal strain (GLS) is a useful tool for evaluation of rejection in Heart Transplant patients (HT-P). However, controversies exist regarding its accuracy and agreement among different vendors. Methods. Stable HT-P underwent simultaneous GLS analysis with vendors (Philips® and General Electric® -GE-). We evaluated GLS agreement between Philips and GE using mean signed difference, Bland-Altman plots and a pre-specified coverage probability of 2 % points. Then, patients were divided into four groups according to rejection history. Differences between groups were performed with T student test. p value < 0.05 was considered significant. Results. In 78 studies were performed. Limits of agreement between vendors were broad, ranging from -6.52% to 6.35%. The mean signed difference between GLS measured by Phillips and GE, was closest to 0, indicating no substantial GLS over or under-estimation by either vendor. However, the percentage of observations that fell within a 2% range was 44 % between vendors. Remarkably, although the mean left ventricle ejection fraction (LVEF) was normal (55.6  7.6%), the average GLS is low as measured by either vendor. Analysis of GLS showed a significant higher GLS in patients without HTr history (Group A), with statistical significance as compared with B, and D. No differences on GLS between groups of patients with any grade of rejection history (Group B vs C). No differences on LVEF were found in any group comparison. Conclusion: Vendors must work in improving agreement in GLS analysis due to the meaningful information it provides in HT-P and other cardio-myopathies. 2019-08-12 2019-08-14T19:35:13Z info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://repository.urosario.edu.co/handle/10336/20108 spa Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess application/pdf Universidad del Rosario Especialización en Cardiología Facultad de Medicina instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiogr. 2000 Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging--clinical applications. Int J Cardiol. 2009 Feb;132(1):11–24. Shiino K, Yamada A, Ischenko M, Khandheria BK, Hudaverdi M, Speranza V, et al. Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging. 2017;18(6):706–16. Negishi K, Lucas S, Negishi T, Hamilton J, Marwick TH. What is the Primary Source of Discordance in Strain Measurement Between Vendors: Imaging or Analysis? Ultrasound Med Biol. 2013;39(4):714–20. Mor-Avi V., Lang R.M., Badano L.P. et al. (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24277–313. Tseng AS, Gorsi US, Barros-Gomes S, Miller FA, Pellikka PA, Clavell AL, et al. Use of speckle-tracking echocardiography-derived strain and systolic strain rate measurements to predict rejection in transplant hearts with preserved ejection fraction. BMC Cardiovasc Disord. 2018;18(1):1–6. Olaya P, Osio LF. Strain and strain rate for dummies. 2011;18(6):340–4. Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial strain. Journal of the American College of Cardiology. 2011. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014 Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. Vol. 69, Journal of the American College of Cardiology. Elsevier USA; 2017. p. 1043–56. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006 Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: A meta-analysis. J Am Soc Echocardiogr. 2013 Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, et al. Myocardial Strain Measurement With 2-Dimensional Speckle-Tracking Echocardiography. Definition of Normal Range. JACC Cardiovasc Imaging. 2009 Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal Range of Left Ventricular 2-Dimensional Strain. Circ J. 2012 Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal Left Ventricular Mechanics by Two-dimensional Speckle-tracking Echocardiography. Reference Values in Healthy Adults. Rev Española Cardiol (English Ed. 2014). Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011 Kaier TE, Morgan D, Grapsa J, Demir OM, Paschou SA, Sundar S, et al. Ventricular remodelling post-bariatric surgery: Is the type of surgery relevant? A prospective study with 3D speckle tracking. European Heart Journal Cardiovascular Imaging. 2014. Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart. 2015 Hoogslag GE, Abou R, Joyce E, Boden H, Kamperidis V, Regeer M V., et al. Comparison of changes in global longitudinal peak systolic strain after ST-segment elevation myocardial infarction in patients with versus without diabetes mellitus. Am J Cardiol. 2015 Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60. Kusunose K, Yamada H, Nishio S, Tomita N, Hotchi J, Bando M, et al. Index-beat assessment of left ventricular systolic and diastolic function during atrial fibrillation using myocardial strain and strain rate. J Am Soc Echocardiogr. 2012 Sep;25(9):953–9. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015 Castel AL, Szymanski C, Delelis F, Levy F, Menet A, Mailliet A, et al. Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors. Arch Cardiovasc Dis. 2014;107(2):96–104. Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011 Pichler P, Binder T, Höfer P, Bergler-Klein J, Goliasch G, Lajic N, et al. Two-dimensional speckle tracking echocardiography in heart transplant patients: Three-year follow-up of deformation parameters and ejection fraction derived from transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(2):181–6. Saleh HK, Villarraga HR, Kane GC, Pereira NL, Raichlin E, Yu Y, et al. Normal ventricular mechanical function and synchrony values by speckle-tracking echocardiography in the transplanted heart with normal ejection fraction. J Hear Lung Transplant. 2011;30(6):652–8.left Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011;12(7):490–6. Ingvarsson A, Werther Evaldsson A, Waktare J, Nilsson J, Smith GJ, Stagmo M, et al. Normal Reference Ranges for Transthoracic Echocardiography Following Heart Transplantation. J Am Soc Echocardiogr. 2018;31(3):349–60. Marciniak A, Eroglu E, Marciniak M, Sirbu C, Herbots L, Droogne W, et al. The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr. 2007;8(3):213–21. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH. Serial changes in longitudinal graft function and implications of acute cellular graft rejections during the first year after heart transplantation. Eur Heart J Cardiovasc Imaging. 2016;17(2):184–93. Le C, Binda C, Guerbaai R, Levy F, Graux P, Tribouilloy C, et al. Global longitudinal strain software upgrade : Implications for intervendor consistency Pierre-Vladimir Ennezat c , Franc. 2016;22–30. Roepe K. A Bayesian Approach to Investigating Age-at-Death of Subadults in a Forensic Context. Biochem Medica. 2014;25(May):141–51. Patrianakos AP, Zacharaki AA, Kalogerakis A, Solidakis G, Parthenakis FI, Vardas PE. Two-dimensional global and segmental longitudinal strain: are the results from software in different high-end ultrasound systems comparable? Echo Res Pract. 2015;2(1):29–39. Lang RM, Badano LP, Mor-avi V, Afilalo J, Armstrong A, Ernande L, et al. Recomendaciones para la Cuantificación de las Cavidades Cardíacas por Ecocardiografía en Adultos : Actualización de la Sociedad Americana de Ecocardiografía y de la Asociación Europea de Imagen Cardiovascular. Am Soc Echocardiogr. 2015;28:1–39. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation : Thirty-fourth Adult Heart Transplantation Report — 2017 ; Focus Theme : Allograft ischemic time. J Hear Lung Transplant. 2017;36(10):1037–46. Almenar-bonet L, Crespo-leiro G, Alonso-pulpo L, Gonza F, Sobrino-ma M, Sousa-casasnovas I, et al. Registro Español de Trasplante Cardiaco. XXIX Informe Oficial de la Sección de Insuficiencia Cardiaca de la Sociedad Española de Cardiología (1984-2017). 2018;71(11):952–60. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiogr. 2000 Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging--clinical applications. Int J Cardiol. 2009 Feb;132(1):11–24. Shiino K, Yamada A, Ischenko M, Khandheria BK, Hudaverdi M, Speranza V, et al. Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging. 2017;18(6):706–16. Negishi K, Lucas S, Negishi T, Hamilton J, Marwick TH. What is the Primary Source of Discordance in Strain Measurement Between Vendors: Imaging or Analysis? Ultrasound Med Biol. 2013;39(4):714–20. Mor-Avi V., Lang R.M., Badano L.P. et al. (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24277–313. Tseng AS, Gorsi US, Barros-Gomes S, Miller FA, Pellikka PA, Clavell AL, et al. Use of speckle-tracking echocardiography-derived strain and systolic strain rate measurements to predict rejection in transplant hearts with preserved ejection fraction. BMC Cardiovasc Disord. 2018;18(1):1–6. Olaya P, Osio LF. Strain and strain rate for dummies. 2011;18(6):340–4. Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial strain. Journal of the American College of Cardiology. 2011. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014 Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. Vol. 69, Journal of the American College of Cardiology. Elsevier USA; 2017. p. 1043–56. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006 Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: A meta-analysis. J Am Soc Echocardiogr. 2013 Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, et al. Myocardial Strain Measurement With 2-Dimensional Speckle-Tracking Echocardiography. Definition of Normal Range. JACC Cardiovasc Imaging. 2009 Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal Range of Left Ventricular 2-Dimensional Strain. Circ J. 2012 Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal Left Ventricular Mechanics by Two-dimensional Speckle-tracking Echocardiography. Reference Values in Healthy Adults. Rev Española Cardiol (English Ed. 2014). Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011 Kaier TE, Morgan D, Grapsa J, Demir OM, Paschou SA, Sundar S, et al. Ventricular remodelling post-bariatric surgery: Is the type of surgery relevant? A prospective study with 3D speckle tracking. European Heart Journal Cardiovascular Imaging. 2014. Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart. 2015 Hoogslag GE, Abou R, Joyce E, Boden H, Kamperidis V, Regeer M V., et al. Comparison of changes in global longitudinal peak systolic strain after ST-segment elevation myocardial infarction in patients with versus without diabetes mellitus. Am J Cardiol. 2015 Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60. Kusunose K, Yamada H, Nishio S, Tomita N, Hotchi J, Bando M, et al. Index-beat assessment of left ventricular systolic and diastolic function during atrial fibrillation using myocardial strain and strain rate. J Am Soc Echocardiogr. 2012 Sep;25(9):953–9. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015 Castel AL, Szymanski C, Delelis F, Levy F, Menet A, Mailliet A, et al. Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors. Arch Cardiovasc Dis. 2014;107(2):96–104. Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011 Pichler P, Binder T, Höfer P, Bergler-Klein J, Goliasch G, Lajic N, et al. Two-dimensional speckle tracking echocardiography in heart transplant patients: Three-year follow-up of deformation parameters and ejection fraction derived from transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(2):181–6. Saleh HK, Villarraga HR, Kane GC, Pereira NL, Raichlin E, Yu Y, et al. Normal ventricular mechanical function and synchrony values by speckle-tracking echocardiography in the transplanted heart with normal ejection fraction. J Hear Lung Transplant. 2011;30(6):652–8.left Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011;12(7):490–6. Ingvarsson A, Werther Evaldsson A, Waktare J, Nilsson J, Smith GJ, Stagmo M, et al. Normal Reference Ranges for Transthoracic Echocardiography Following Heart Transplantation. J Am Soc Echocardiogr. 2018;31(3):349–60. Marciniak A, Eroglu E, Marciniak M, Sirbu C, Herbots L, Droogne W, et al. The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr. 2007;8(3):213–21. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH. Serial changes in longitudinal graft function and implications of acute cellular graft rejections during the first year after heart transplantation. Eur Heart J Cardiovasc Imaging. 2016;17(2):184–93. Le C, Binda C, Guerbaai R, Levy F, Graux P, Tribouilloy C, et al. Global longitudinal strain software upgrade : Implications for intervendor consistency Pierre-Vladimir Ennezat c , Franc. 2016;22–30. Roepe K. A Bayesian Approach to Investigating Age-at-Death of Subadults in a Forensic Context. Biochem Medica. 2014;25(May):141–51. Patrianakos AP, Zacharaki AA, Kalogerakis A, Solidakis G, Parthenakis FI, Vardas PE. Two-dimensional global and segmental longitudinal strain: are the results from software in different high-end ultrasound systems comparable? Echo Res Pract. 2015;2(1):29–39. Lang RM, Badano LP, Mor-avi V, Afilalo J, Armstrong A, Ernande L, et al. Recomendaciones para la Cuantificación de las Cavidades Cardíacas por Ecocardiografía en Adultos : Actualización de la Sociedad Americana de Ecocardiografía y de la Asociación Europea de Imagen Cardiovascular. Am Soc Echocardiogr. 2015;28:1–39. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation : Thirty-fourth Adult Heart Transplantation Report — 2017 ; Focus Theme : Allograft ischemic time. J Hear Lung Transplant. 2017;36(10):1037–46. Almenar-bonet L, Crespo-leiro G, Alonso-pulpo L, Gonza F, Sobrino-ma M, Sousa-casasnovas I, et al. Registro Español de Trasplante Cardiaco. XXIX Informe Oficial de la Sección de Insuficiencia Cardiaca de la Sociedad Española de Cardiología (1984-2017). 2018;71(11):952–60. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiogr. 2000 Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging--clinical applications. Int J Cardiol. 2009 Feb;132(1):11–24. Shiino K, Yamada A, Ischenko M, Khandheria BK, Hudaverdi M, Speranza V, et al. Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging. 2017;18(6):706–16. Negishi K, Lucas S, Negishi T, Hamilton J, Marwick TH. What is the Primary Source of Discordance in Strain Measurement Between Vendors: Imaging or Analysis? Ultrasound Med Biol. 2013;39(4):714–20. Mor-Avi V., Lang R.M., Badano L.P. et al. (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24277–313. Tseng AS, Gorsi US, Barros-Gomes S, Miller FA, Pellikka PA, Clavell AL, et al. Use of speckle-tracking echocardiography-derived strain and systolic strain rate measurements to predict rejection in transplant hearts with preserved ejection fraction. BMC Cardiovasc Disord. 2018;18(1):1–6. Olaya P, Osio LF. Strain and strain rate for dummies. 2011;18(6):340–4. Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial strain. Journal of the American College of Cardiology. 2011. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014 Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. Vol. 69, Journal of the American College of Cardiology. Elsevier USA; 2017. p. 1043–56. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006 Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: A meta-analysis. J Am Soc Echocardiogr. 2013 Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, et al. Myocardial Strain Measurement With 2-Dimensional Speckle-Tracking Echocardiography. Definition of Normal Range. JACC Cardiovasc Imaging. 2009 Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal Range of Left Ventricular 2-Dimensional Strain. Circ J. 2012 Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal Left Ventricular Mechanics by Two-dimensional Speckle-tracking Echocardiography. Reference Values in Healthy Adults. Rev Española Cardiol (English Ed. 2014). Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011 Kaier TE, Morgan D, Grapsa J, Demir OM, Paschou SA, Sundar S, et al. Ventricular remodelling post-bariatric surgery: Is the type of surgery relevant? A prospective study with 3D speckle tracking. European Heart Journal Cardiovascular Imaging. 2014. Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart. 2015 Hoogslag GE, Abou R, Joyce E, Boden H, Kamperidis V, Regeer M V., et al. Comparison of changes in global longitudinal peak systolic strain after ST-segment elevation myocardial infarction in patients with versus without diabetes mellitus. Am J Cardiol. 2015 Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60. Kusunose K, Yamada H, Nishio S, Tomita N, Hotchi J, Bando M, et al. Index-beat assessment of left ventricular systolic and diastolic function during atrial fibrillation using myocardial strain and strain rate. J Am Soc Echocardiogr. 2012 Sep;25(9):953–9. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015 Castel AL, Szymanski C, Delelis F, Levy F, Menet A, Mailliet A, et al. Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors. Arch Cardiovasc Dis. 2014;107(2):96–104. Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011 Pichler P, Binder T, Höfer P, Bergler-Klein J, Goliasch G, Lajic N, et al. Two-dimensional speckle tracking echocardiography in heart transplant patients: Three-year follow-up of deformation parameters and ejection fraction derived from transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(2):181–6. Saleh HK, Villarraga HR, Kane GC, Pereira NL, Raichlin E, Yu Y, et al. Normal ventricular mechanical function and synchrony values by speckle-tracking echocardiography in the transplanted heart with normal ejection fraction. J Hear Lung Transplant. 2011;30(6):652–8.left Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011;12(7):490–6. Ingvarsson A, Werther Evaldsson A, Waktare J, Nilsson J, Smith GJ, Stagmo M, et al. Normal Reference Ranges for Transthoracic Echocardiography Following Heart Transplantation. J Am Soc Echocardiogr. 2018;31(3):349–60. Marciniak A, Eroglu E, Marciniak M, Sirbu C, Herbots L, Droogne W, et al. The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr. 2007;8(3):213–21. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH. Serial changes in longitudinal graft function and implications of acute cellular graft rejections during the first year after heart transplantation. Eur Heart J Cardiovasc Imaging. 2016;17(2):184–93. Le C, Binda C, Guerbaai R, Levy F, Graux P, Tribouilloy C, et al. Global longitudinal strain software upgrade : Implications for intervendor consistency Pierre-Vladimir Ennezat c , Franc. 2016;22–30. Roepe K. A Bayesian Approach to Investigating Age-at-Death of Subadults in a Forensic Context. Biochem Medica. 2014;25(May):141–51. Patrianakos AP, Zacharaki AA, Kalogerakis A, Solidakis G, Parthenakis FI, Vardas PE. Two-dimensional global and segmental longitudinal strain: are the results from software in different high-end ultrasound systems comparable? Echo Res Pract. 2015;2(1):29–39. Lang RM, Badano LP, Mor-avi V, Afilalo J, Armstrong A, Ernande L, et al. Recomendaciones para la Cuantificación de las Cavidades Cardíacas por Ecocardiografía en Adultos : Actualización de la Sociedad Americana de Ecocardiografía y de la Asociación Europea de Imagen Cardiovascular. Am Soc Echocardiogr. 2015;28:1–39. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation : Thirty-fourth Adult Heart Transplantation Report — 2017 ; Focus Theme : Allograft ischemic time. J Hear Lung Transplant. 2017;36(10):1037–46. Almenar-bonet L, Crespo-leiro G, Alonso-pulpo L, Gonza F, Sobrino-ma M, Sousa-casasnovas I, et al. Registro Español de Trasplante Cardiaco. XXIX Informe Oficial de la Sección de Insuficiencia Cardiaca de la Sociedad Española de Cardiología (1984-2017). 2018;71(11):952–60. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiogr. 2000 Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging--clinical applications. Int J Cardiol. 2009 Feb;132(1):11–24. Shiino K, Yamada A, Ischenko M, Khandheria BK, Hudaverdi M, Speranza V, et al. Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging. 2017;18(6):706–16. Negishi K, Lucas S, Negishi T, Hamilton J, Marwick TH. What is the Primary Source of Discordance in Strain Measurement Between Vendors: Imaging or Analysis? Ultrasound Med Biol. 2013;39(4):714–20. Mor-Avi V., Lang R.M., Badano L.P. et al. (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24277–313. Tseng AS, Gorsi US, Barros-Gomes S, Miller FA, Pellikka PA, Clavell AL, et al. Use of speckle-tracking echocardiography-derived strain and systolic strain rate measurements to predict rejection in transplant hearts with preserved ejection fraction. BMC Cardiovasc Disord. 2018;18(1):1–6. Olaya P, Osio LF. Strain and strain rate for dummies. 2011;18(6):340–4. Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial strain. Journal of the American College of Cardiology. 2011. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014 Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. Vol. 69, Journal of the American College of Cardiology. Elsevier USA; 2017. p. 1043–56. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006 Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: A meta-analysis. J Am Soc Echocardiogr. 2013 Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, et al. Myocardial Strain Measurement With 2-Dimensional Speckle-Tracking Echocardiography. Definition of Normal Range. JACC Cardiovasc Imaging. 2009 Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal Range of Left Ventricular 2-Dimensional Strain. Circ J. 2012 Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal Left Ventricular Mechanics by Two-dimensional Speckle-tracking Echocardiography. Reference Values in Healthy Adults. Rev Española Cardiol (English Ed. 2014). Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011 Kaier TE, Morgan D, Grapsa J, Demir OM, Paschou SA, Sundar S, et al. Ventricular remodelling post-bariatric surgery: Is the type of surgery relevant? A prospective study with 3D speckle tracking. European Heart Journal Cardiovascular Imaging. 2014. Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart. 2015 Hoogslag GE, Abou R, Joyce E, Boden H, Kamperidis V, Regeer M V., et al. Comparison of changes in global longitudinal peak systolic strain after ST-segment elevation myocardial infarction in patients with versus without diabetes mellitus. Am J Cardiol. 2015 Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60. Kusunose K, Yamada H, Nishio S, Tomita N, Hotchi J, Bando M, et al. Index-beat assessment of left ventricular systolic and diastolic function during atrial fibrillation using myocardial strain and strain rate. J Am Soc Echocardiogr. 2012 Sep;25(9):953–9. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015 Castel AL, Szymanski C, Delelis F, Levy F, Menet A, Mailliet A, et al. Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors. Arch Cardiovasc Dis. 2014;107(2):96–104. Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011 Pichler P, Binder T, Höfer P, Bergler-Klein J, Goliasch G, Lajic N, et al. Two-dimensional speckle tracking echocardiography in heart transplant patients: Three-year follow-up of deformation parameters and ejection fraction derived from transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(2):181–6. Saleh HK, Villarraga HR, Kane GC, Pereira NL, Raichlin E, Yu Y, et al. Normal ventricular mechanical function and synchrony values by speckle-tracking echocardiography in the transplanted heart with normal ejection fraction. J Hear Lung Transplant. 2011;30(6):652–8.left Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur J Echocardiogr. 2011;12(7):490–6. Ingvarsson A, Werther Evaldsson A, Waktare J, Nilsson J, Smith GJ, Stagmo M, et al. Normal Reference Ranges for Transthoracic Echocardiography Following Heart Transplantation. J Am Soc Echocardiogr. 2018;31(3):349–60. Marciniak A, Eroglu E, Marciniak M, Sirbu C, Herbots L, Droogne W, et al. The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr. 2007;8(3):213–21. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH. Serial changes in longitudinal graft function and implications of acute cellular graft rejections during the first year after heart transplantation. Eur Heart J Cardiovasc Imaging. 2016;17(2):184–93. Le C, Binda C, Guerbaai R, Levy F, Graux P, Tribouilloy C, et al. Global longitudinal strain software upgrade : Implications for intervendor consistency Pierre-Vladimir Ennezat c , Franc. 2016;22–30. Roepe K. A Bayesian Approach to Investigating Age-at-Death of Subadults in a Forensic Context. Biochem Medica. 2014;25(May):141–51. Patrianakos AP, Zacharaki AA, Kalogerakis A, Solidakis G, Parthenakis FI, Vardas PE. Two-dimensional global and segmental longitudinal strain: are the results from software in different high-end ultrasound systems comparable? Echo Res Pract. 2015;2(1):29–39. Lang RM, Badano LP, Mor-avi V, Afilalo J, Armstrong A, Ernande L, et al. Recomendaciones para la Cuantificación de las Cavidades Cardíacas por Ecocardiografía en Adultos : Actualización de la Sociedad Americana de Ecocardiografía y de la Asociación Europea de Imagen Cardiovascular. Am Soc Echocardiogr. 2015;28:1–39. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation : Thirty-fourth Adult Heart Transplantation Report — 2017 ; Focus Theme : Allograft ischemic time. J Hear Lung Transplant. 2017;36(10):1037–46. Almenar-bonet L, Crespo-leiro G, Alonso-pulpo L, Gonza F, Sobrino-ma M, Sousa-casasnovas I, et al. Registro Español de Trasplante Cardiaco. XXIX Informe Oficial de la Sección de Insuficiencia Cardiaca de la Sociedad Española de Cardiología (1984-2017). 2018;71(11):952–60.
score 12,111491