The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance

Candida albicans es el hongo patógeno que con mayor frecuencia compromete a los pacientes en el ambiente hospitalario, su versatilidad para adaptarse al huésped le ha permitido jugar el rol de comensal colonizador de tracto digestivo, tracto genito urinario y la piel entre otras localizaciones ana...

Descripción completa

Detalles Bibliográficos
Autor Principal: Rodriguez-Leguizamon, Giovanni
Otros Autores: Van Dijck, Patrick
Formato: Tesis de doctorado (Doctoral Thesis)
Lenguaje:Español (Spanish)
Publicado: Universidad del Rosario 2016
Materias:
Acceso en línea:http://repository.urosario.edu.co/handle/10336/13785
id ir-10336-13785
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Español (Spanish)
topic Candida albicans
Candida africana
Candida albicans atipica
Infecciones adquiridas en el hospital
MALDI - TOF MS
Equinocandinas
Caspofungina
Farmacología & terapéutica
Candida albicans
Candida africana
Atypical Candida albicans
Hospital acquired infection
MALDI - TOF MS
Echinocandins
Caspofungin
Biología molecular
Candida albicans
Candidiasis
Proteínas fúngicas
Terapéutica
spellingShingle Candida albicans
Candida africana
Candida albicans atipica
Infecciones adquiridas en el hospital
MALDI - TOF MS
Equinocandinas
Caspofungina
Farmacología & terapéutica
Candida albicans
Candida africana
Atypical Candida albicans
Hospital acquired infection
MALDI - TOF MS
Echinocandins
Caspofungin
Biología molecular
Candida albicans
Candidiasis
Proteínas fúngicas
Terapéutica
Rodriguez-Leguizamon, Giovanni
The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
description Candida albicans es el hongo patógeno que con mayor frecuencia compromete a los pacientes en el ambiente hospitalario, su versatilidad para adaptarse al huésped le ha permitido jugar el rol de comensal colonizador de tracto digestivo, tracto genito urinario y la piel entre otras localizaciones anatómicas. Las infecciones causadas por este hongo representan un reto diagnóstico para los médicos frente a sus pacientes y para los sistemas de salud representa un alto costo. El armamentario antifungico se ve reducido ante la capacidad de adaptación de esta levadura dimórfica, convirtiéndose resistente e incrementando el grado de dificultad para lograr un tratamiento exitoso en un paciente crítico. La serie de eventos que permite la adaptación de esta levadura a los ambientes nosocomiales permanecen desconocidas, sin embargo, en el desarrollo de la tesis doctoral se describe el avance en las técnicas micológicas, en la proteomica para el diagnóstico y en la biología molecular, para aportar elementos de criterio diagnóstico y conocer mejor este peligroso patógeno que pone en riesgo la vida de pacientes críticos en los hospitales del mundo. Adicionalmente en el desarrollo de la tesis doctoral se describe el comportamiento fenotípico de una muestra de aislamientos nosocomiales de C.albicans recolectados en instituciones hospitalarias de tercer nivel de atención de Bogotá Colombia, evaluando patrones de susceptibilidad ante las equinocandinas como reciente opción terapéutica, mediante el desarrollo de las pruebas estandarizadas de susceptibilidad del CLSI con las dos últimas versiones M27-A3 y M27-S4, encontrando en esta muestra patrones de susceptibilidad reducidos.
author2 Van Dijck, Patrick
author_facet Van Dijck, Patrick
Rodriguez-Leguizamon, Giovanni
format Tesis de doctorado (Doctoral Thesis)
author Rodriguez-Leguizamon, Giovanni
author_sort Rodriguez-Leguizamon, Giovanni
title The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
title_short The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
title_full The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
title_fullStr The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
title_full_unstemmed The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
title_sort role of the fks1 gene in nosocomial candida albicans isolates’ virulence and antifungal resistance
publisher Universidad del Rosario
publishDate 2016
url http://repository.urosario.edu.co/handle/10336/13785
_version_ 1645141399890296832
spelling ir-10336-137852019-09-19T12:37:01Z The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance Rodriguez-Leguizamon, Giovanni Van Dijck, Patrick Patarroyo, Manuel A. Gómez López, Arley Candida albicans Candida africana Candida albicans atipica Infecciones adquiridas en el hospital MALDI - TOF MS Equinocandinas Caspofungina Farmacología & terapéutica Candida albicans Candida africana Atypical Candida albicans Hospital acquired infection MALDI - TOF MS Echinocandins Caspofungin Biología molecular Candida albicans Candidiasis Proteínas fúngicas Terapéutica Candida albicans es el hongo patógeno que con mayor frecuencia compromete a los pacientes en el ambiente hospitalario, su versatilidad para adaptarse al huésped le ha permitido jugar el rol de comensal colonizador de tracto digestivo, tracto genito urinario y la piel entre otras localizaciones anatómicas. Las infecciones causadas por este hongo representan un reto diagnóstico para los médicos frente a sus pacientes y para los sistemas de salud representa un alto costo. El armamentario antifungico se ve reducido ante la capacidad de adaptación de esta levadura dimórfica, convirtiéndose resistente e incrementando el grado de dificultad para lograr un tratamiento exitoso en un paciente crítico. La serie de eventos que permite la adaptación de esta levadura a los ambientes nosocomiales permanecen desconocidas, sin embargo, en el desarrollo de la tesis doctoral se describe el avance en las técnicas micológicas, en la proteomica para el diagnóstico y en la biología molecular, para aportar elementos de criterio diagnóstico y conocer mejor este peligroso patógeno que pone en riesgo la vida de pacientes críticos en los hospitales del mundo. Adicionalmente en el desarrollo de la tesis doctoral se describe el comportamiento fenotípico de una muestra de aislamientos nosocomiales de C.albicans recolectados en instituciones hospitalarias de tercer nivel de atención de Bogotá Colombia, evaluando patrones de susceptibilidad ante las equinocandinas como reciente opción terapéutica, mediante el desarrollo de las pruebas estandarizadas de susceptibilidad del CLSI con las dos últimas versiones M27-A3 y M27-S4, encontrando en esta muestra patrones de susceptibilidad reducidos. Candida albicans is the pathogenic fungus most frequently compromising patients in a hospital setting; its versatility in adapting to a host has enabled it to colonise their digestive tracts, genitourinary tracts and skin. Infection caused by this fungus represents a diagnostic challenge for doctors regarding their patients and represents high costs for health systems. C. albicans represents a diagnostic challenge in clinical practice since it is a commensal microorganism whose transformation into a pathogen remains partly unknown; moreover, its adaptation to a hospital environment poses an additional problem. However, advances in mycological techniques, proteomics for diagnosis and molecular biology can provide diagnostic criteria for a better understanding of this dangerous pathogen threatening the critically ill patients’ lives in hospitals worldwide. This thesis thus describes the atypical pattern of a group of C. albicans nosocomial isolates leading to an association between phenotypical traits concerned with echinocandin tolerance and changes in these microorganisms’ morphology and physiology regarding selective pressure factors in an antifungal-mediated hospital setting. Evaluation by molecular biology, conventional mycology and proteomics’ tools should contribute towards constructing more accurate local epidemiology for decision-making regarding the management and control of hospital infection by this fungus. Universidad del Rosario Vlaams Instituut voor Biotechnologie KU Leuven 2016-04-12 2017-09-27T20:07:34Z info:eu-repo/date/embargoEnd/2019-09-27 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://repository.urosario.edu.co/handle/10336/13785 spa http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/embargoedAccess application/pdf Universidad del Rosario Doctorado en Ciencias Biomédicas Facultad de Ciencias Naturales y Matemáticas instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR Whittington A: From commensal to pathogen: Candida albicans. In: Human Fungal Pathogens. Edited by Kurzai O. Berlin Heidelberg: Springer-Verlag; 2014: 3-18. Pfaller MA, Diekema DJ: Epidemiology of invasive mycoses in North America. Critical reviews in microbiology 2010 36(1):1-53 Pfaller MA: Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 1996, 22 Suppl 2:S89-94 Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39(3):309-317 Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D: Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003, 37(9):1172-1177 Pfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews 2007, 20(1):133-163 DiazGranados CA, Martinez A, Deaza C, Valderrama S: An outbreak of Candida spp. bloodstream infection in a tertiary care center in Bogota, Colombia. Braz J Infect Dis 2008, 12(5):390-394 Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, Coleman DC: Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS yeast research 2004, 4(4-5):369-376 Pfaller MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, Veselov AV, Tiraboschi N, Nagy E, Gibbs DL: Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. Journal of clinical microbiology 2005, 43(12):5848-5859 Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ: In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. Journal of clinical microbiology 2008, 46(1):150-156 Walker LA, Gow NA, Munro CA: Fungal echinocandin resistance. Fungal Genet Biol 2010, 47(2):117-126 Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, Baixench MT, Bretagne S, Dromer F, Lortholary O, French Mycoses Study G: Candida spp. with acquired echinocandin resistance, France, 2004-2010. Emerging infectious diseases 2012, 18(1):86-90 Pappas PG, Kauffman CA, Andes D, Benjamin DK, Jr., Calandra TF, Edwards JE, Jr., Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L et al: Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009, 48(5):503-535 Shapiro RS, Robbins N, Cowen LE: Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011, 75(2):213-267 Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, Li W, Vyas V, Fan H, Abruzzo G et al: Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrobial agents and chemotherapy 2005, 49(8):3264-3273 Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, de Koning LJ, Klis FM: Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryotic cell 2011, 10(8):1071-1081 Brandt ME: Recent taxonomic developments with Candida and other opportunistic yeasts. Curr Fungal Infect Rep 2012, 6(3):170-177 Hedges SB: The origin and evolution of model organisms. Nature reviews Genetics 2002, 3(11):838-849 Criseo G, Scordino F, Romeo O: Current methods for identifying clinically important cryptic Candida species. Journal of microbiological methods 2015, 111C:50-56 Ngouana TK, Krasteva D, Drakulovski P, Toghueo RK, Kouanfack C, Ambe A, Reynes J, Delaporte E, Boyom FF, Mallie M et al: Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaounde (Cameroon) HIV-infected patients. Mycoses 2015, 58(1):33-39 Tietz HJ, Hopp M, Schmalreck A, Sterry W, Czaika V: Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses 2001, 44(11-12):437-445. Berman J, Sudbery PE: Candida Albicans: a molecular revolution built on lessons from budding yeast. Nature reviews Genetics 2002, 3(12):918-930 Sudbery PE: Growth of Candida albicans hyphae. Nature reviews 2011, 9(10):737-748 Wahab AA, Taj-Aldeen SJ, Kolecka A, ElGindi M, Finkel JS, Boekhout T: High prevalence of Candida dubliniensis in lower respiratory tract secretions from cystic fibrosis patients may be related to increased adherence properties. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 2014, 24:14-19 Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC: Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 1995, 141 ( Pt 7):1507-1521 Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT et al: The diploid genome sequence of Candida albicans. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(19):7329-7334 Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL et al: Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459(7247):657-662 De Backer MD, Magee PT, Pla J: Recent developments in molecular genetics of Candida albicans. Annual review of microbiology 2000, 54:463-498 Santos MA, Tuite MF: The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic acids research 1995, 23(9):1481-1486 Arnaud MB, Inglis DO, Skrzypek MS, Binkley J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G: Candida Genome Database. http://www.candidagenome.org/ (Last accessed may 19th 2015) Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ: The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS biology 2008, 6(5):e110 Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R: Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS yeast research 2006, 6(1):14-29 Brown JA, Catley BJ: Monitoring polysaccharide synthesis in Candida albicans. Carbohydrate Research 1992, 227:195-202 Gow NA, van de Veerdonk FL, Brown AJ, Netea MG: Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature reviews 2012, 10(2):112-122 Chaffin WL: Candida albicans cell wall proteins. Microbiol Mol Biol Rev 2008, 72(3):495-544 Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML: Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 2008, 45(10):1404-1414 Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP: Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS pathogens 2006, 2(3):e21 Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD: Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrobial agents and chemotherapy 2005, 49(6):2226-2236 Barchiesi F, Orsetti E, Gesuita R, Skrami E, Manso E, Candidemia Study G: Epidemiology, clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy from 2010 to 2014. Infection 2015 Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M: The changing epidemiology of healthcare-associated candidemia over three decades. Diagnostic microbiology and infectious disease 2012, 73(1):45-48 Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL: Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis 2010, 51(5):561-570 Chen PY, Chuang YC, Wang JT, Sheng WH, Yu CJ, Chu CC, Hsueh PR, Chang SC, Chen YC: Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 2014, 47(2):95-103 Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J: The direct cost and incidence of systemic fungal infections. Value Health 2002, 5(1):26-34 Blot SI, Depuydt P, Annemans L, Benoit D, Hoste E, De Waele JJ, Decruyenaere J, Vogelaers D, Colardyn F, Vandewoude KH: Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 2005, 41(11):1591-1598 Moran C, Grussemeyer CA, Spalding JR, Benjamin DK, Jr., Reed SD: Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. American journal of infection control 2010, 38(1):78-80 Calderone RA: Candida and candidiasis, 2nd edn. Washington D.C., U.S.A.; 2012 Kadosh D, Johnson AD: Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Molecular biology of the cell 2005, 16(6):2903-2912 Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's principles of internal medicine, 18th edn: McGraw-Hill; 2012 Hermsen ED, Zapapas MK, Maiefski M, Rupp ME, Freifeld AG, Kalil AC: Validation and comparison of clinical prediction rules for invasive candidiasis in intensive care unit patients: a matched case-control study. Critical care (London, England) 2011, 15(4):R198 Garner JS: Infection control and applied epidemiology. St. Louis, MI, U.S.A.: Mosby; 1996 Horan TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. American journal of infection control 2008, 36(5):309-332 Perlroth J, Choi B, Spellberg B: Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 2007, 45(4):321-346 Sydnor ER, Perl TM: Hospital epidemiology and infection control in acute-care settings. Clinical microbiology reviews 2011, 24(1):141-173 Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH: An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010, 9(9):719-727 Maubon D, Garnaud C, Calandra T, Sanglard D, Cornet M: Resistance of Candida spp. to antifungal drugs in the ICU: where are we now? Intensive care medicine 2014, 40(9):1241-1255 Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S et al: Amphotericin forms an extramembranous and fungicidal sterol sponge. Nature chemical biology 2014, 10(5):400-406 Hope WW, Tabernero L, Denning DW, Anderson MJ: Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrobial agents and chemotherapy 2004, 48(11):4377-4386 Eschenauer G, Depestel DD, Carver PL: Comparison of echinocandin antifungals. Therapeutics and clinical risk management 2007, 3(1):71-97 Perlin DS: Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 2007, 10(3):121-130 Denning DW: Echinocandin antifungal drugs. Lancet 2003, 362(9390):1142-1151 Deresinski SC, Stevens DA: Caspofungin. Clin Infect Dis 2003, 36(11):1445-1457 Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S et al: ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 2012, 18 Suppl 7:19-37 Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E et al: ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 2012, 18 Suppl 7:53-67 Cowen LE: The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nature reviews 2008, 6(3):187-198 Rogers TR: Antifungal drug resistance: limited data, dramatic impact? International journal of antimicrobial agents 2006, 27 Suppl 1:7-11 Sanglard D, Coste A, Ferrari S: Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS yeast research 2009, 9(7):1029-1050 Schuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K: The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Molecular microbiology 2003, 48(1):225-235 Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ: Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. Journal of medical microbiology 2011, 60(Pt 9):1241-1247 Perlin DS: Current perspectives on echinocandin class drugs. Future microbiology 2011, 6(4):441-457 Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL: Candida biofilms: an update. Eukaryotic cell 2005, 4(4):633-638 Ramage G, Martinez JP, Lopez-Ribot JL: Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS yeast research 2006, 6(7):979-986 Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE: Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS pathogens 2009, 5(7):e1000532 Ramage G, Rajendran R, Sherry L, Williams C: Fungal biofilm resistance. International journal of microbiology 2012, 2012:528521 Laverdiere M, Lalonde RG, Baril JG, Sheppard DC, Park S, Perlin DS: Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. The Journal of antimicrobial chemotherapy 2006, 57(4):705-708 Garcia-Effron G, Park S, Perlin DS: Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrobial agents and chemotherapy 2009, 53(1):112-122 Balashov SV, Park S, Perlin DS: Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrobial agents and chemotherapy 2006, 50(6):2058-2063 Miller CD, Lomaestro BW, Park S, Perlin DS: Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy 2006, 26(6):877-880 Katiyar S, Pfaller M, Edlind T: Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrobial agents and chemotherapy 2006, 50(8):2892-2894 Baixench MT, Aoun N, Desnos-Ollivier M, Garcia-Hermoso D, Bretagne S, Ramires S, Piketty C, Dannaoui E: Acquired resistance to echinocandins in Candida albicans: case report and review. The Journal of antimicrobial chemotherapy 2007, 59(6):1076-1083 Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, Motyl M, Perlin DS: Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 2011, 14(3):164-176 Wiederhold NP, Grabinski JL, Garcia-Effron G, Perlin DS, Lee SA: Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrobial agents and chemotherapy 2008, 52(11):4145-4148 Poulain D, Jouault T: Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Current opinion in microbiology 2004, 7(4):342-349 Nather K, Munro CA: Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS microbiology letters 2008, 285(2):137-145 Cowen LE, Steinbach WJ: Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryotic cell 2008, 7(5):747-764 Angiolella L, Stringaro AR, De Bernardis F, Posteraro B, Bonito M, Toccacieli L, Torosantucci A, Colone M, Sanguinetti M, Cassone A et al: Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrobial agents and chemotherapy 2008, 52(3):927-936 Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE: Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrobial agents and chemotherapy 2005, 49(12):5146-5148 Rauceo JM, Blankenship JR, Fanning S, Hamaker JJ, Deneault JS, Smith FJ, Nantel A, Mitchell AP: Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1. Molecular biology of the cell 2008, 19(7):2741-2751 Onyewu C, Wormley FL, Jr., Perfect JR, Heitman J: The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infection and immunity 2004, 72(12):7330-7333 Perlin DS: Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs 2014, 74(14):1573-1585 Shields RK, Nguyen MH, Du C, Press E, Cheng S, Clancy CJ: Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrobial agents and chemotherapy 2011, 55(6):2641-2647 Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H: Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrobial agents and chemotherapy 2006, 50(9):3160-3161 Gauwerky K, Borelli C, Korting HC: Targeting virulence: a new paradigm for antifungals. Drug discovery today 2009, 14(3-4):214-222 Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F et al: Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS yeast research 2009, 9(5):688-700 Nailis H, Kucharikova S, Ricicova M, Van Dijck P, Deforce D, Nelis H, Coenye T: Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC microbiology 2010, 10:114 Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schafer W, Hube B: Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infection and immunity 2002, 70(7):3689-3700 Wayne PA: CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; CLSI document M27-A3; 2008 Rodriguez-Tudela JL: EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 2008, 14(4):398-405 Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, Chryssanthou E, Cuenca-Estrella M, Dannaoui E, Fothergill A et al: Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrobial agents and chemotherapy 2013, 57(12):5836-5842 Wayne PA: CLSI. Reference Method for Broth Dilution Antifungal Suscetibility Testing of Yeasts; Fourth Informational Supplement. CLSI Document M27-S4; 2012 Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD, Andes D, Brown SD, Chaturvedi V, Ghannoum MA, Knapp CC et al: Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. Journal of clinical microbiology 2008, 46(8):2620-2629 Espinel-Ingroff A: In vitro antifungal activities of anidulafungin and micafungin, licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal isolates: review of the literature. Rev Iberoam Micol 2003, 20(4):121-136 Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J et al: Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrobial agents and chemotherapy 2003, 47(10):3149-3154 Espinel-Ingroff A, Canton E, Peman J, Martin-Mazuelo E: Comparison of anidulafungin MICs determined by the clinical and laboratory standards institute broth microdilution method (M27-A3 document) and Etest for Candida species isolates. Antimicrobial agents and chemotherapy 2010, 54(3):1347-1350 Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, Jones RN: Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. Journal of clinical microbiology 2010, 48(5):1592-1599 Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Jones RN, Turnidge J, Diekema DJ: Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. Journal of clinical microbiology 2010, 48(1):52-56 Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW: Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat 2013, 16(6):81-95 Pfaller MA, Boyken L, Hollis RJ, Messer SA, Tendolkar S, Diekema DJ: Global surveillance of in vitro activity of micafungin against Candida: a comparison with caspofungin by CLSI-recommended methods. Journal of clinical microbiology 2006, 44(10):3533-3538 Arendrup MC, Garcia-Effron G, Lass-Florl C, Lopez AG, Rodriguez-Tudela JL, Cuenca-Estrella M, Perlin DS: Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrobial agents and chemotherapy 2010, 54(1):426-439 Ministerio de Protección Social: Resolución 8430. In. Bogotá, Colombia; 1993 WMA Declaration of Helsinki: Ethical Principles for Human Research Involving Human Subjects. In. Seoul, Korea; 2008 Garner J.S: Infection Control and Applied Epidemiology. St. Louis: Mosby; 1996. Pfaller MA, Bale M, Buschelman B, Lancaster M, Espinel-Ingroff A, Rex JH, Rinaldi MG: Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods. Journal of clinical microbiology 1994, 32(7):1650-1653 Koszul R, Malpertuy A, Frangeul L, Bouchier C, Wincker P, Thierry A, Duthoy S, Ferris S, Hennequin C, Dujon B: The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS letters 2003, 534(1-3):39-48 Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL: Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 2001, 18(4):163-170 Maidan MM, De Rop L, Relloso M, Diez-Orejas R, Thevelein JM, Van Dijck P: Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infection and immunity 2008, 76(4):1686-1694 Wilson D, Fiori A, Brucker KD, Dijck PV, Stateva L: Candida albicans Pde1p and Gpa2p comprise a regulatory module mediating agonist-induced cAMP signalling and environmental adaptation. Fungal Genet Biol 2010, 47(9):742-752 Cuetara MS, Alhambra A, Del Palacio A: [Traditional microbiological diagnosis for invasive candidiasis in critical non-neutropenic patients]. Rev Iberoam Micol 2006, 23(1):4-7 Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408 Walker LA, Gow NA, Munro CA: Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrobial agents and chemotherapy 2013, 57(1):146-154 Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gomez-Lopez A, Boekhout T: Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. Journal of clinical microbiology 2012, 50(11):3641-3651 Qian J, Cutler JE, Cole RB, Cai Y: MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Analytical and bioanalytical chemistry 2008, 392(3):439-449 Suzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22(12):1540-1542 Alberti-Segui C, Morales AJ, Xing H, Kessler MM, Willins DA, Weinstock KG, Cottarel G, Fechtel K, Rogers B: Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast (Chichester, England) 2004, 21(4):285-302 White TJ BT, Lee S, Taylor J.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide Methods and Applications. Edited by Innis A GD, Snisky JJ, White TJ. San Diego, CA: Academic Press; 1990: 315-322 Romeo O, Criseo G: First molecular method for discriminating between Candida africana, Candida albicans, and Candida dubliniensis by using hwp1 gene. Diagnostic microbiology and infectious disease 2008, 62(2):230-233 Edwards JE, Jr., Bodey GP, Bowden RA, Buchner T, de Pauw BE, Filler SG, Ghannoum MA, Glauser M, Herbrecht R, Kauffman CA et al: International Conference for the Development of a Consensus on the Management and Prevention of Severe Candidal Infections. Clin Infect Dis 1997, 25(1):43-59 Eggimann P, Ostrosky-Zeichner L: Early antifungal intervention strategies in ICU patients. Current opinion in critical care 2010, 16(5):465-469 Asmundsdottir LR, Erlendsdottir H, Haraldsson G, Guo H, Xu J, Gottfredsson M: Molecular epidemiology of candidemia: evidence of clusters of smoldering nosocomial infections. Clin Infect Dis 2008, 47(2):e17-24 Drakulovski P, Dunyach C, Bertout S, Reynes J, Mallie M: A Candida albicans strain with high MIC for caspofungin and no FKS1 mutations exhibits a high chitin content and mutations in two chitinase genes. Med Mycol 2011, 49(5):467-474 Gomez J, Garcia-Vazquez E, Hernandez A, Espinosa C, Ruiz J: [Nosocomial candidemia: new challenges of an emergent problem]. Rev Esp Quimioter 2010, 23(4):158-168 Morrell M, Fraser VJ, Kollef MH: Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrobial agents and chemotherapy 2005, 49(9):3640-3645 Baillie GS, Douglas LJ: Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrobial agents and chemotherapy 1998, 42(8):1900-1905 Ernst JF, Pla J: Signaling the glycoshield: maintenance of the Candida albicans cell wall. International journal of medical microbiology : IJMM 2011, 301(5):378-383 Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D: Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Molecular biology of the cell 2008, 19(1):352-367 Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H: Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Journal of medical microbiology 2011, 60(Pt 9):1261-1269 Staab JF, Bradway SD, Fidel PL, Sundstrom P: Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999, 283(5407):1535-1538 Cowen LE, Anderson JB, Kohn LM: Evolution of drug resistance in Candida albicans. Annual review of microbiology 2002, 56:139-165 Maidan MM, Thevelein JM, Van Dijck P: Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochemical Society transactions 2005, 33(Pt 1):291-293 Homann OR, Dea J, Noble SM, Johnson AD: A phenotypic profile of the Candida albicans regulatory network. PLoS genetics 2009, 5(12):e1000783 Han TL, Cannon RD, Villas-Boas SG: The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011, 48(8):747-763 Liu H, Kohler J, Fink GR: Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994, 266(5191):1723-1726 Toenjes KA, Munsee SM, Ibrahim AS, Jeffrey R, Edwards JE, Jr., Johnson DI: Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrobial agents and chemotherapy 2005, 49(3):963-972 Peeters T, Versele M, Thevelein JM: Directly from Galpha to protein kinase A: the kelch repeat protein bypass of adenylate cyclase. Trends in biochemical sciences 2007, 32(12):547-554 Kadosh D, Lopez-Ribot JL: Candida albicans: adapting to succeed. Cell host & microbe 2013, 14(5):483-485 Braun BR, Kadosh D, Johnson AD: NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. The EMBO journal 2001, 20(17):4753-4761 Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD: A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012, 148(1-2):126-138 Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL: A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrobial agents and chemotherapy 2010, 54(9):3578-3583 Markovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N: Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrobial agents and chemotherapy 2004, 48(10):3871-3876 Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD: Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. The Journal of antimicrobial chemotherapy 2004, 54(2):376-385 Zhang N, Cannon RD, Holland BR, Patchett ML, Schmid J: Impact of genetic background on allele selection in a highly mutable Candida albicans gene, PNG2. PloS one 2010, 5(3):e9614 Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NA: The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular microbiology 2007, 63(5):1399-1413 Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA: Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS pathogens 2008, 4(4):e1000040 Nishiyama Y, Uchida K, Yamaguchi H: Morphological changes of Candida albicans induced by micafungin (FK463), a water-soluble echinocandin-like lipopeptide. Journal of electron microscopy 2002, 51(4):247-255 Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M: Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 2011, 17(9):1359-1365 Vlek A, Kolecka A, Khayhan K, Theelen B, Groenewald M, Boel E, Boekhout T: Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. Journal of clinical microbiology 2014, 52(8):3023-3029 Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC: Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. Journal of clinical microbiology 2012, 50(10):3301-3308 Alonso-Vargas R, Elorduy L, Eraso E, Cano FJ, Guarro J, Ponton J, Quindos G: Isolation of Candida africana, probable atypical strains of Candida albicans, from a patient with vaginitis. Med Mycol 2008, 46(2):167-170 Dieng Y, Sow D, Ndiaye M, Guichet E, Faye B, Tine R, Lo A, Sylla K, Ndiaye M, Abiola A et al: [Identification of three Candida africana strains in Senegal]. Journal de mycologie medicale 2012, 22(4):335-340 Nnadi NE, Ayanbimpe GM, Scordino F, Okolo MO, Enweani IB, Criseo G, Romeo O: Isolation and molecular characterization of Candida africana from Jos, Nigeria. Med Mycol 2012, 50(7):765-767 Romeo O, Criseo G: Morphological, biochemical and molecular characterisation of the first Italian Candida africana isolate. Mycoses 2009, 52(5):454-457 Odds FC, Bougnoux ME, Shaw DJ, Bain JM, Davidson AD, Diogo D, Jacobsen MD, Lecomte M, Li SY, Tavanti A et al: Molecular phylogenetics of Candida albicans. Eukaryotic cell 2007, 6(6):1041-1052 Romeo O TH, Criseo G.: Candida africana: It is a fungal pathogen? Curr Fungal Infect Rep 2013, 7:192-197 Pulcrano G, Iula DV, Vollaro A, Tucci A, Cerullo M, Esposito M, Rossano F, Catania MR: Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections. Journal of microbiological methods 2013, 94(3):262-266 De Carolis E, Vella A, Vaccaro L, Torelli R, Posteraro P, Ricciardi W, Sanguinetti M, Posteraro B: Development and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based yeast identification using a fast protein extraction procedure. Journal of clinical microbiology 2014, 52(5):1453-1458 Pedreno Y, Maicas S, Arguelles JC, Sentandreu R, Valentin E: The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans. The Journal of biological chemistry 2004, 279(39):40852-40860 Ram SP, Romana LK, Shepherd MG, Sullivan PA: Exo-(1----3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans. Journal of general microbiology 1984, 130(5):1227-1236 Peterson SW, Kurtzman CP: Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 1991, 14:124-129 Borman AM, Szekely A, Linton CJ, Palmer MD, Brown P, Johnson EM: Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana isolates from the United Kingdom. Journal of clinical microbiology 2013, 51(3):967-972 Shan Y, Fan S, Liu X, Li J: Prevalence of Candida albicans-closely related yeasts, Candida africana and Candida dubliniensis, in vulvovaginal candidiasis. Med Mycol 2014, 52(6):636-640 Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E: Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryotic cell 2009, 8(11):1750-1758 Beck-Sague C, Jarvis WR: Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. The Journal of infectious diseases 1993, 167(5):1247-1251 Gibbons JD: Nonparametric statistical inference. New York: McGraw Hill; 1971 Castellan NJ, Siegel S: Nonparametric statistics for the behavioral science, 2nd edn: McGraw - Hill Publishing Co; 1988 Yang SP, Chen YY, Hsu HS, Wang FD, Chen LY, Fung CP: A risk factor analysis of healthcare-associated fungal infections in an intensive care unit: a retrospective cohort study. BMC infectious diseases 2013, 13:10 Chandra RK: Impact of nutritional status and nutrient supplements on immune responses and incidence of infection in older individuals. Ageing research reviews 2004, 3(1):91-104 Ostrosky-Zeichner L, Pappas PG, Shoham S, Reboli A, Barron MA, Sims C, Wood C, Sobel JD: Improvement of a clinical prediction rule for clinical trials on prophylaxis for invasive candidiasis in the intensive care unit. Mycoses 2009, 54(1):46-51 Bastert J, Schaller M, Korting HC, Evans EG: Current and future approaches to antimycotic treatment in the era of resistant fungi and immunocompromised hosts. International journal of antimicrobial agents 2001, 17(2):81-91 Diekema DJ, Pfaller MA: Nosocomial candidemia: an ounce of prevention is better than a pound of cure. Infect Control Hosp Epidemiol 2004, 25(8):624-626 Sobel JD, Rex JH: Invasive candidiasis: turning risk into a practical prevention policy? Clin Infect Dis 2001, 33(2):187-190 Rodriguez-Leguizamon G, Fiori A, Lagrou K, Gaona MA, Ibanez M, Patarroyo MA, Van Dijck P, Gomez-Lopez A: New echinocandin susceptibility patterns for nosocomial Candida albicans in Bogota, Colombia, in ten tertiary care centres: an observational study. BMC infectious diseases 2015, 15:108 Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP: Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. The Journal of infectious diseases 2011, 204(4):626-635 Slater JL, Howard SJ, Sharp A, Goodwin J, Gregson LM, Alastruey-Izquierdo A, Arendrup MC, Warn PA, Perlin DS, Hope WW: Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrobial agents and chemotherapy 2011, 55(7):3075-3083 Romeo O, Criseo G: Candida africana and its closest relatives. Mycoses 2011, 54(6):475-486 Gil-Alonso S, Jauregizar N, Canton E, Eraso E, Quindos G: Comparison of the in vitro activity of echinocandins against Candida albicans, Candida dubliniensis, and Candida africana by time-kill curves. Diagnostic microbiology and infectious disease 2015, 82(1):57-61
score 11,369555