Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study

We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method wa...

Descripción completa

Detalles Bibliográficos
Autores Principales: Mesa, Fredy, Seña, N., Dussan, Anderson, Castaño, E., González-Hernández, R.
Otros Autores: NanoTech
Formato: Documento de trabajo (Working Paper)
Lenguaje:Inglés (English)
Publicado: 2016
Materias:
Acceso en línea:http://repository.urosario.edu.co/handle/10336/12563
id ir-10336-12563
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Inglés (English)
topic electronic, structure,magnetism
spellingShingle electronic, structure,magnetism
Mesa, Fredy
Seña, N.
Dussan, Anderson
Castaño, E.
González-Hernández, R.
Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
description We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors
author2 NanoTech
author_facet NanoTech
Mesa, Fredy
Seña, N.
Dussan, Anderson
Castaño, E.
González-Hernández, R.
format Documento de trabajo (Working Paper)
author Mesa, Fredy
Seña, N.
Dussan, Anderson
Castaño, E.
González-Hernández, R.
author_sort Mesa, Fredy
title Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
title_short Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
title_full Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
title_fullStr Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
title_full_unstemmed Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
title_sort electronic structure and magnetism of mn-doped gasb for spintronic applications: a dft study
publishDate 2016
url http://repository.urosario.edu.co/handle/10336/12563
_version_ 1645140978125766656
spelling ir-10336-125632019-09-19T12:37:54Z Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study Mesa, Fredy Seña, N. Dussan, Anderson Castaño, E. González-Hernández, R. NanoTech electronic, structure,magnetism We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors 2016-07-19 2016-11-09T22:45:35Z info:eu-repo/semantics/workingPaper info:eu-repo/semantics/publishedVersion http://repository.urosario.edu.co/handle/10336/12563 eng http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess application/pdf instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999). T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). T. Dietl and H. Ohno, Physica E 9, 185 (2001). J. Konig, J. Schliemann, T. Jungwirth, and A. H. MacDonald, in Electronic Structure and Magnetism of Complex Materials, edited by D. J. Singh and D. A. Papaconstantopoulos (Springer, Berlin, 2002) P. S. Dutta, H. L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997) H. Ohno, Science 291, 840 (2001) F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87, 6442 (2000) L. Tran, J. Herfort, O. Bierwagen, F. Hatami, and W. T. Masselink, Phys. Status Solidi (C) 6, 1492 (2009) K. Ganesan and H. L. Bhat, J. Supercond. Novel Magn. 21, 391 (2008) S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys. Rev. Lett. 78, 4617 (1997) H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000) E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, and H. Ohno, Physica E 7, 981 (2000) F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998) T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002) K. H. J. Buschow, Handbook of Magnetic Materials (Elsevier, North Holland, 2002) P. E. Blochl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, ibid. 59, 1758 (1999) G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976) J. Buckeridge, D. O. Scanlon, T. D. Veal, M. J. Ashwin, A. Walsh, and C. R. A. Catlow, Phys. Rev. B 89, 014107 (2014) M. R. Islam, N. F. Chen, and M. Yamada, Cryst. Res. Technol. 43, 1091 (2008) O. D. D. Couto, Jr., M. J. S. P. Brasil, F. Iikawa, C. Giles, C. Adriano, J. R. R. Bortoleto, M. A. A. Pudenzi, H. R. Gutierrez, and I. Danilov, Appl. Phys. Lett. 86, 071906 (2005) M. Moreno, A. Trampert, B. Jenichen, L. Daweritz, and K. H. Ploog, J. Appl. Phys. 92, 4672 (2002) X. Y. Cui, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. B 76, 045201 (2007) P. Mahadevan and A. Zunger, Phys. Rev. B 68, 075202 (2003) J. Okabayashi, A. Kimura, O. Rader, T. Misokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 64, 125304 (2001) H. Asklund, L. Ilver, J. Kanski, J. Sadowski, and R. Mathieu, Phys. Rev. B 66, 115319 (2002) D. Kitchen, A. Richardella, J. M. Tang, M. E. Flatte, and A. Yazdani, Nature 442, 436 (2006) B. Sanyal, O. Bengone, and S. Mirbt, Phys. Rev. B 68, 205210 (2003) T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006) H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996) J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, P. Weinberger, and P. Bruno, Phys. Rev. B 69, 115208 (2004)
score 12,131701