Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method wa...
Autores Principales: | , , , , |
---|---|
Otros Autores: | |
Formato: | Documento de trabajo (Working Paper) |
Lenguaje: | Inglés (English) |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | http://repository.urosario.edu.co/handle/10336/12563 |
id |
ir-10336-12563 |
---|---|
recordtype |
dspace |
institution |
EdocUR - Universidad del Rosario |
collection |
DSpace |
language |
Inglés (English) |
topic |
electronic, structure,magnetism |
spellingShingle |
electronic, structure,magnetism Mesa, Fredy Seña, N. Dussan, Anderson Castaño, E. González-Hernández, R. Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study |
description |
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors |
author2 |
NanoTech |
author_facet |
NanoTech Mesa, Fredy Seña, N. Dussan, Anderson Castaño, E. González-Hernández, R. |
format |
Documento de trabajo (Working Paper) |
author |
Mesa, Fredy Seña, N. Dussan, Anderson Castaño, E. González-Hernández, R. |
author_sort |
Mesa, Fredy |
title |
Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study |
title_short |
Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study |
title_full |
Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study |
title_fullStr |
Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study |
title_full_unstemmed |
Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study |
title_sort |
electronic structure and magnetism of mn-doped gasb for spintronic applications: a dft study |
publishDate |
2016 |
url |
http://repository.urosario.edu.co/handle/10336/12563 |
_version_ |
1645140978125766656 |
spelling |
ir-10336-125632019-09-19T12:37:54Z Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study Mesa, Fredy Seña, N. Dussan, Anderson Castaño, E. González-Hernández, R. NanoTech electronic, structure,magnetism We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors 2016-07-19 2016-11-09T22:45:35Z info:eu-repo/semantics/workingPaper info:eu-repo/semantics/publishedVersion http://repository.urosario.edu.co/handle/10336/12563 eng http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess application/pdf instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999). T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). T. Dietl and H. Ohno, Physica E 9, 185 (2001). J. Konig, J. Schliemann, T. Jungwirth, and A. H. MacDonald, in Electronic Structure and Magnetism of Complex Materials, edited by D. J. Singh and D. A. Papaconstantopoulos (Springer, Berlin, 2002) P. S. Dutta, H. L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997) H. Ohno, Science 291, 840 (2001) F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87, 6442 (2000) L. Tran, J. Herfort, O. Bierwagen, F. Hatami, and W. T. Masselink, Phys. Status Solidi (C) 6, 1492 (2009) K. Ganesan and H. L. Bhat, J. Supercond. Novel Magn. 21, 391 (2008) S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys. Rev. Lett. 78, 4617 (1997) H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000) E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, and H. Ohno, Physica E 7, 981 (2000) F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998) T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002) K. H. J. Buschow, Handbook of Magnetic Materials (Elsevier, North Holland, 2002) P. E. Blochl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, ibid. 59, 1758 (1999) G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976) J. Buckeridge, D. O. Scanlon, T. D. Veal, M. J. Ashwin, A. Walsh, and C. R. A. Catlow, Phys. Rev. B 89, 014107 (2014) M. R. Islam, N. F. Chen, and M. Yamada, Cryst. Res. Technol. 43, 1091 (2008) O. D. D. Couto, Jr., M. J. S. P. Brasil, F. Iikawa, C. Giles, C. Adriano, J. R. R. Bortoleto, M. A. A. Pudenzi, H. R. Gutierrez, and I. Danilov, Appl. Phys. Lett. 86, 071906 (2005) M. Moreno, A. Trampert, B. Jenichen, L. Daweritz, and K. H. Ploog, J. Appl. Phys. 92, 4672 (2002) X. Y. Cui, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. B 76, 045201 (2007) P. Mahadevan and A. Zunger, Phys. Rev. B 68, 075202 (2003) J. Okabayashi, A. Kimura, O. Rader, T. Misokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 64, 125304 (2001) H. Asklund, L. Ilver, J. Kanski, J. Sadowski, and R. Mathieu, Phys. Rev. B 66, 115319 (2002) D. Kitchen, A. Richardella, J. M. Tang, M. E. Flatte, and A. Yazdani, Nature 442, 436 (2006) B. Sanyal, O. Bengone, and S. Mirbt, Phys. Rev. B 68, 205210 (2003) T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006) H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996) J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, P. Weinberger, and P. Bruno, Phys. Rev. B 69, 115208 (2004) |
score |
12,131701 |