Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá

Introducción Los sistemas de puntuación para predicción se han desarrollado para medir la severidad de la enfermedad y el pronóstico de los pacientes en la unidad de cuidados intensivos. Estas medidas son útiles para la toma de decisiones clínicas, la estandarización de la investigación, y la comp...

Descripción completa

Detalles Bibliográficos
Autor Principal: Rojas Ruiz, Ingrid Tatiana
Otros Autores: Hernández Herrera, Gilma Norela
Formato: Tesis de maestría (Master Thesis)
Lenguaje:Español (Spanish)
Publicado: Universidad del Rosario 2016
Materias:
Acceso en línea:http://repository.urosario.edu.co/handle/10336/12407
id ir-10336-12407
recordtype dspace
institution EdocUR - Universidad del Rosario
collection DSpace
language Español (Spanish)
topic Puntaje pronóstico
Cuidado crítico
Cáncer
Mortandad
Incidencia & prevención de la enfermedad
Pronosctic score
Critical care
Cancer
Mortality
Mortalidad hospitalaria -- predicciones
Neoplasias -- análisis
spellingShingle Puntaje pronóstico
Cuidado crítico
Cáncer
Mortandad
Incidencia & prevención de la enfermedad
Pronosctic score
Critical care
Cancer
Mortality
Mortalidad hospitalaria -- predicciones
Neoplasias -- análisis
Rojas Ruiz, Ingrid Tatiana
Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá
description Introducción Los sistemas de puntuación para predicción se han desarrollado para medir la severidad de la enfermedad y el pronóstico de los pacientes en la unidad de cuidados intensivos. Estas medidas son útiles para la toma de decisiones clínicas, la estandarización de la investigación, y la comparación de la calidad de la atención al paciente crítico. Materiales y métodos Estudio de tipo observacional analítico de cohorte en el que reviso las historias clínicas de 283 pacientes oncológicos admitidos a la unidad de cuidados intensivos (UCI) durante enero de 2014 a enero de 2016 y a quienes se les estimo la probabilidad de mortalidad con los puntajes pronósticos APACHE IV y MPM II, se realizó regresión logística con las variables predictoras con las que se derivaron cada uno de los modelos es sus estudios originales y se determinó la calibración, la discriminación y se calcularon los criterios de información Akaike AIC y Bayesiano BIC. Resultados En la evaluación de desempeño de los puntajes pronósticos APACHE IV mostro mayor capacidad de predicción (AUC = 0,95) en comparación con MPM II (AUC = 0,78), los dos modelos mostraron calibración adecuada con estadístico de Hosmer y Lemeshow para APACHE IV (p = 0,39) y para MPM II (p = 0,99). El ∆ BIC es de 2,9 que muestra evidencia positiva en contra de APACHE IV. Se reporta el estadístico AIC siendo menor para APACHE IV lo que indica que es el modelo con mejor ajuste a los datos. Conclusiones APACHE IV tiene un buen desempeño en la predicción de mortalidad de pacientes críticamente enfermos, incluyendo pacientes oncológicos. Por lo tanto se trata de una herramienta útil para el clínico en su labor diaria, al permitirle distinguir los pacientes con alta probabilidad de mortalidad.
author2 Hernández Herrera, Gilma Norela
author_facet Hernández Herrera, Gilma Norela
Rojas Ruiz, Ingrid Tatiana
format Tesis de maestría (Master Thesis)
author Rojas Ruiz, Ingrid Tatiana
author_sort Rojas Ruiz, Ingrid Tatiana
title Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá
title_short Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá
title_full Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá
title_fullStr Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá
title_full_unstemmed Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá
title_sort evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en bogotá
publisher Universidad del Rosario
publishDate 2016
url http://repository.urosario.edu.co/handle/10336/12407
_version_ 1645142346063413248
spelling ir-10336-124072019-09-19T12:37:54Z Evaluación del desempeño pronóstico de dos puntajes de predicción de mortalidad a siete días en pacientes adultos oncológicos críticamente enfermos admitidos a una unidad de cuidados intensivos en Bogotá Rojas Ruiz, Ingrid Tatiana Hernández Herrera, Gilma Norela Puntaje pronóstico Cuidado crítico Cáncer Mortandad Incidencia & prevención de la enfermedad Pronosctic score Critical care Cancer Mortality Mortalidad hospitalaria -- predicciones Neoplasias -- análisis Introducción Los sistemas de puntuación para predicción se han desarrollado para medir la severidad de la enfermedad y el pronóstico de los pacientes en la unidad de cuidados intensivos. Estas medidas son útiles para la toma de decisiones clínicas, la estandarización de la investigación, y la comparación de la calidad de la atención al paciente crítico. Materiales y métodos Estudio de tipo observacional analítico de cohorte en el que reviso las historias clínicas de 283 pacientes oncológicos admitidos a la unidad de cuidados intensivos (UCI) durante enero de 2014 a enero de 2016 y a quienes se les estimo la probabilidad de mortalidad con los puntajes pronósticos APACHE IV y MPM II, se realizó regresión logística con las variables predictoras con las que se derivaron cada uno de los modelos es sus estudios originales y se determinó la calibración, la discriminación y se calcularon los criterios de información Akaike AIC y Bayesiano BIC. Resultados En la evaluación de desempeño de los puntajes pronósticos APACHE IV mostro mayor capacidad de predicción (AUC = 0,95) en comparación con MPM II (AUC = 0,78), los dos modelos mostraron calibración adecuada con estadístico de Hosmer y Lemeshow para APACHE IV (p = 0,39) y para MPM II (p = 0,99). El ∆ BIC es de 2,9 que muestra evidencia positiva en contra de APACHE IV. Se reporta el estadístico AIC siendo menor para APACHE IV lo que indica que es el modelo con mejor ajuste a los datos. Conclusiones APACHE IV tiene un buen desempeño en la predicción de mortalidad de pacientes críticamente enfermos, incluyendo pacientes oncológicos. Por lo tanto se trata de una herramienta útil para el clínico en su labor diaria, al permitirle distinguir los pacientes con alta probabilidad de mortalidad. Introduction Scoring systems for prediction have been developed to measure the severity of the disease and the prognosis of patients in the intensive care unit. These measures are useful for clinical decision-making, standardization of research and comparing the quality of care to critically ill patients. Materials and methods Study of analytical observational cohort who reviewed the medical records of 283 cancer patients admitted to the intensive care unit during January 2014 to January 2016 and which were calculated the probability of mortality APACHE IV and MPM II, logistic regression was performed with the predictor variables that were derived each of the models is their original studies and calibration is determined, discrimination and Akaike information criteria AIC and BIC Bayesian were calculated. Results In assessing prognostic performance APACHE IV scores showed greater capacity for discrimination (AUC = 0.95) compared with MPM II (AUC = 0.78), the two models showed adequate calibration Hosmer and Lemeshow statistic for APACHE IV (p = 0.39) and MPM II (p = 0.99) Conclusions APACHE IV has a good performance in predicting mortality of critically ill patients, including cancer patients. Therefore it is a useful tool for clinicians in their daily work by allowing you to distinguish patients with high probability of mortality. 2016-09-20 2016-10-12T20:06:20Z info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://repository.urosario.edu.co/handle/10336/12407 spa http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess application/pdf Universidad del Rosario Maestría en Epidemiología Facultad de medicina instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR 1. Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010 Diciembre; 127(12). Freddie B, Ahmedin J, Nathan G, Jacques F, David F. Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol. 2012 Agosto; 13(8) David S, James S, Douglas B, Wolff P, Anne J. Intensive care, survival, and expense of treating critically ill cancer patients. JAMA. 1993 Febrero; 6(269). James S. Intensive care and oncology. Support Care Cancer. 1995 Marzo; 3(2) Wigmore TJ, Farquhar-Smith P, Lawson A. Intensive care for the cancer patient – Unique clinical and ethical challenges and outcome prediction in the critically ill cancer patient. Best Practice & Research Clinical Anaesthesiology. 2013 Diciembre; 27(4). Azoulay É, Pochard F, Chevret S, Vinsonneau C. Compliance with triage to intensive care recommendations. Crit Care Med. 2001 Noviembre; 29(11). Benoit D, Vandewoude K, Decruyenaere J, Hoste E, Colardyn F. Outcome and early prognostic indicators in patients with a hematologic malignancy admitted to the intensive care unit for a life-threatening complication. Crit Care Med. 2003 Enero; 31(1). Staudinger T, Stoiser B, Müllner M, Locker G, Laczika K, Knapp S. Outcome and prognostic factors in critically ill cancer patients admitted to the intensive care unit. Crit Care Med. 2000 Mayo; 28(5). Wachter R, Luce J, Hearst N, Lo B. Decisions about resuscitation: inequities among patients with different diseases but similar prognoses. Ann Intern Med. 1989 Septiembre; 111(6) Tanvetyanon T, Leighton J. Life-sustaining treatments in patients who died of chronic congestive heart failure compared with metastatic cancer. Crit Care Med. 2003 Enero; 31(1). Vliet Mv, Verburg I, Boogaard M, Keizer N. Trends in admission prevalence, illness severity and survival of haematological patients treated in Dutch intensive care units. Intensive Care Med. 2014 Septiembre; 40(9) Soares M, Fontes F, Dantas J. Performance of six severity-of-illness scores in cancer patients requiring admission to the intensive care unit: a prospective observational study. Critical care. 2004 Mayo; 8(4). T. Berghmans MPJPS. Is a specific oncological scoring system better at predicting the prognosis of cancer patients admitted for an acute medical complication in an intensive care unit than general gravity scores? Support Care Cancer. 2004 Enero; 12. Lecuyer L, Chevret S, Thiery G, Darmon M, Schlemmer B, Azoulay É. The ICU Trial: A new admission policy for cancer patients requiring mechanical ventilation. Critical Care Medicine. 2007 Diciembre; 35(3). Guiguet M, Blot F, Escudier B, Antoun S, Leclercq B, Nitenberg G. Severity-of-illness scores for neutropenic cancer patients in an intensive care unit: Which is the best predictor? Do multiple assessment times improve the predictive value. Critical Care Medicine. 1998 Marzo; 26(3). John K, Christenson J, Pohlman A, Darren Linkin , Jesse Hall. Outcomes of critically ill cancer patients in a university hospital setting. Am J Respir Crit Care Med. 1999 Diciembre; 160(6). G M, F B, K M, E H. Outcome analysis of 189 consecutive cancer patients referred to the intensive care unit as emergencies during a 2-year period. Eur J Cancer. 2003 Abril; 39(6). Boer Sd, Keizer NFd, Jonge Ed. Performance of prognostic models in critically ill cancer patients - a review. Critical care. Julio 2005; 9(4). Kress J, Christenson J, Pohlman A, Linkin D, Hal J. Outcomes of critically ill cancer patients in a university hospital setting. Am J Respir Crit Care Med. 1999 Diciembre; 160(6). Afessa B, Tefferi A, Hoagland C, Letendre L, Peters S. Outcome of recipients of bone marrow transplants who require intensive-care unit support. Mayo Clin Proc. 1992 Febrero; 67(2). Paz H, Crilley P, Weinar M, Brodsky I. Outcome of Patients Requiring Medical ICU Admission Following Bone Marrow Transplantation. Chest. 1993 Agosto; 104(2). Faber-Langendoen K, Caplan A, Peter M. Survival of adult bone marrow transplant patients receiving mechanical ventilation: a case for restricted use. Bone Marrow Transplant. 1993 Noviembre; 12(5). Benz R, Siciliano R, Stuss G, Fehr J. Risk factors for ICU admission and ICU survival after allogeneic hematopoietic SCT. Bone Marrow Transplantation. 2013 Septiembre; 2014(49). Darmon M, Thiery G, Ciroldi M, de Miranda S, Galicier L, Raffoux E, et al. Intensive care in patients with newly diagnosed malignancies and a need for cancer chemotherapy. Critical Care Medicine. 2005 Noviembre; 33(11). Azoulay E, Mokart D, Pène F, Lambert J, Kouatchet A, Mayaux J, et al. Outcomes of Critically Ill Patients With Hematologic Malignancies: Prospective Multicenter Data From France and Belgium—A Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique Study. Journal of clinical oncology. 2013 Agosto; 31(22) Soares M, Caruso P, Silva E, Teles J, Lobo S, Friedman G, et al. Characteristics and outcomes of patients with cancer requiring admission to intensive care units: A prospective multicenter study. Critical Care Medicine. 2010 Enero; 38(1). Staudinger T, Stoiser B, Müllner M, Locker G, Laczika K, Knapp S, et al. Outcome and prognostic factors in critically ill cancer patients admitted to the intensive care unit. Critical Care Medicine. 2000 Mayo; 28(5). Larché J, Azoulay É, Fieux F, Mesnard L, Moreau D, Thiery G, et al. Improved survival of critically ill cancer patients with septic shock. Intensive Care Medicine. 2003 Octubre; 29(10). Soares M, Salluh J, Spector N, Rocco J. Characteristics and outcomes of cancer patients requiring mechanical ventilatory support for >24 hrs. Critical Care Medicine. 2005 Marzo; 33(3). Keenan H, Bratton S, Martin L, Crawford S, Weiss N. Outcome of children who require mechanical ventilatory support after bone marrow transplantation. Critical Care Medicine. 2000 Marzo; 28(3). Ewer M, Atta M, Morice R. Outcome of Lung Cancer Patients Requiring Mechanical Ventilation for Pulmonary Failure. JAMA. 1986 Diciembre; 256(24). Bird G, Farquhar-Smith P, Wigmore T, Potter M, Gruber P. Outcomes and prognostic factors in patients with haematological malignancy admitted to a specialist cancer intensive care unit: a 5 yr study. Br J Anaesth. 2012 Marzo; 108(3). Bartlett R, Morris A, Fairley B, Hirsch R, O'Connor N, Pontoppidan H. A Prospective Study of Acute Hypoxic Respiratory Failure. Chest. 1986 Mayo; 89(5). Sakallaris B, Jastremski C, Von Rueden K. Clinical decision support systems for outcome measurement and management. AACN Clin Issues. 2000 Agosto; 11(3). Keenan H, Bratton S, Martin L, Crawford S, Weiss N. Outcome of children who require mechanical ventilatory support after bone marrow transplantation. Critical Care Medicine. 2000 Marzo; 28(3) Giraldo N, Toro JM, Cadavid C, Zapata F. Desempeño del APACHE II y el SAPS 3 Adaptación regional en una población de pacientes críticos de Colombia. Acta Médica Colombiana. 20014 Abril; 39(2). Ho K, Dobb G, Knuiman M, Finn J. A comparison of admission and worst 24-hour Acute Physiology and Chronic Health Evaluation II scores in predicting hospital mortality: a retrospective cohort study. Critical Care. 2005 Noviembre; 10(1). Escarce J, Kelley M. Admission Source to the Medical Intensive Care Unit Predicts Hospital Death Independent of APACHE II Score. JAMA. 1990 Noviembre; 264(18). Knaus W, Wagner D, Draper E, Zimmerman J, Bergner M. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. CHEST. 1991 Diciembre; 100(6). Zimmerman JE, Kramer AA, Douglas S. McNair. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006 Mayo; 34(5). 41. Zimmerman J, Kramer A, McNair D, Malila F, Shaffer V. Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Critical Care Medicine. 2006 Octubre; 34(10). Ma C, Ve V, Aa S, Sa B, Ve P. Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensive Care Med. Diciembre 2000; 26(12). Douglas W, William K, Frank H, Jack Z. Daily prognostic estimates for critically ill adults in intensive care units: results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994 Septiembre; 22(9). Connors A, Dawson N, Desbiens N, Fulkerson W. A Controlled Trial to Improve Care for Seriously III Hospitalized Patients. The Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT). JAMA. 1995 Noviembre; 274(20). Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach S. Mortality Probability Models (MPM II) Based on an International Cohort of Intensive Care Unit Patients. JAMA. 1993 Noviembre; 270(20). Lemeshow S, Le JR. Modeling the Severity of Illness of ICU Patients. JAMA. 1994 Octubre; 272(13). Higgins T, Kramer A, Nathanson B, Copes W, Stark M, Teres D. Prospective validation of the intensive care unit admission Mortality Probability Model (MPM0-III). Critical Care Medicine. 2009 Mayo; 37(5). Higgins T, Teres D, Copes W, Nathanson B, Stark M, Kramer A. Assessing contemporary intensive care unit outcome: An updated Mortality Probability Admission Model (MPM0-III). Critical Care Medicine. 2007 Marzo; 35(3). Kuzniewicz M, Vasilevskis E, Lane R, Dean M. Variation in ICU Risk-Adjusted Mortality : Impact of Methods of Assessment and Potential Confounders. Chest. 2008 Junio; 133(6). Roberto Hernandez Sampieri. Metodología de la investigación. Sexta ed. Rocha M, editor. Mexico: Mc Graw Hill; 2014. Freeman DH. Applied categorical data analysis. In Freeman DH. Applied categorical data analysis. New York; 1987. Martinez M, Sánchez A. Aspectos avanzados de regresión logísitica. In Martinez M, editor. Bioestadistica amigable. Madrid: Diaz de Santos; 2009. p. 777- 818. Posada S, Rosero R. Comparación de modelos matemáticos: una aplicación en la evaluación de alimentos para animales. Revista colombiana de ciencias pecuarias. 2007 Mayo; 20. Gómez S, Torres V, García Y, Navarro J. Procedimientos estadísticos más utilizados en el análisis de medidas repetidas en el tiempo en el sector agropecuario. Revista Cubana de Ciencia Agrícola. 2012 Diciembre; 16(1). L G. Tesis de maestria. Matrices de covarianza estructuradas en modelos con medidas repetidas. Recinto universitario de Mayagüez, Universidad de Puerto Rico. 2005. Farquhar-Smith WP, Wigmore T. Outcomes for patients in critical care. Current anaesthesia and critical care. 2008; 19. JS G, J G, DM N. Probability of mortality of critically ill cancer patients at 72 h of intensive care unit (ICU) management. Support Care cancer. 2003 Noviembre; 11(310). Kass R, Raftery A. Bayes Factors. Journal of the American Statistical Association. 1995; 90(430).
score 11,36867